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Adjustment for Heterogeneous Covariances of Herd Milk Yield by Transformation of Test-

Day Random Regressions. By Gengler et al., page 000. Heterogeneity of components of 

variation is a major source of bias in genetic evaluations. An innovative approach based on 

adjustment of regressions of each test-day yield during lactation was developed to allow extreme 

flexibility during the modeling process. This method allows herd-specific genetic parameters 

based on herd yield level. Multibreed evaluation with accommodation for breed-specific 

parameters (e.g., heritabilities) and inclusion of crossbreds through interpolation based on 

proportion of genes from ancestor breeds also is possible with this method. Another possibility is 

to extend the method to produce different bull rankings according to the source of covariance 

differences. 
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A method of accounting for differences in covariance components of test-day milk records 

was developed based on transformation of regressions for random effects. Preliminary analysis 

indicated that genetic and nongenetic covariance structures differed by herd milk yield. 

Differences were found for phenotypic covariances and also for genetic, permanent 

environmental, and herd-time covariances. Heritabilities for test-day milk yield tended to be 

lower at the end and especially at the start of lactation; they also were higher (maximum of 

∼25%) for high-yield herds and lower (maximum of 15%) for low-yield herds. Permanent 

environmental variances averaged 10% lower in high-yield herds. Relative herd-time variances 

were ∼10% at start of lactation and then began to decrease regardless of herd yield; high-yield 

herds increased in midlactation followed by another decrease, and medium-yield herds increased 

at end of lactation. Regressors for random regression effects were transformed to adjust for 

heterogeneity of test-day yield covariances. Some animal reranking occurred because of this 

transformation of genetic and permanent environmental effects. When genetic correlations 

between environments were allowed to differ from 1, some additional animal reranking occurred. 

Correlations of variances of genetic and permanent-environmental regression solutions within 

herd, test-day, and milking frequency class with class mean milk yields were reduced with 

adjustment for heterogeneous covariance. The method suggests a number of innovative solutions 

to issues related to heterogeneous covariance structures, such as adjusted estimates in multibreed 

evaluation. 

(Keywords: heterogeneous covariance, covariance structure, test-day yield, random regression) 

Abbreviation key: EM = expectation maximization, HC = heterogeneous covariance, RRM = 

random regression model. 
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INTRODUCTION 35 

36 

37 

Accounting for heterogeneity of covariance among test-day observations is an important  

component of test-day model development. For lactation models, the issue of heterogeneous 

variance has been addressed by numerous studies (e.g., Dong and Mao, 1990; Short et al., 1990), 

and most genetic evaluation systems account for heterogeneity of variance through data 

adjustment prior to analysis (e.g., 

38 

39 

Wiggans and VanRaden, 1991) or direct estimation during 

analysis (e.g., 

40 

Meuwissen et al., 1996). Only a few systems correct for heterogeneous variance 

components. One example is in the United States, where heritability is adjusted (

41 

Wiggans and 

VanRaden, 1991). 

42 

43 

For test-day models, most studies have focused on heterogeneity of phenotypic (e.g., Ibáñez 

et al., 1996; Pool and Meuwissen, 2000) or residual (e.g., Ibáñez et al., 1999; Jaffrezic et al., 

2000; Rekaya et al., 1999) variance. However, heterogeneity of covariance components, which is 

more difficult to estimate, has received limited attention despite its importance. The assumed 

covariance structures among test-day yields are used for estimation over the whole lactation or 

across lactations even if information is available only for a few test days (e.g., 

46 

47 

48 

Pool and 

Meuwissen, 1999). 

44 

45 

49 

50 

51 

52 

One feature of random coefficient models, also known as random regression models (RRM), 

is that they allow modeling of covariances through regressions. That feature has been used in 

studies on heat stress (Ravagnolo and Misztal, 2000) and on reaction norm models (Strandberg et 

al., 2000). With current RRM, covariances are modeled as functions of regression and 

elementary covariances among regressions. 

53 

54 

55 

56 

57 

Simple, robust estimation procedures for heterogeneous covariance (HC) matrices currently 

are not available. The first objective of this study, therefore, was to estimate HC components 
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according to herd milk yield. The second objective was to show that HC across herd yield levels 

can be modeled by adjusting a priori regressions for random effects. The final objective was to 

extend the method to study and to model genetic correlations between herd yield levels that can 

be <1. 

58 

59 

60 

61 

62 

63 

64 

65 

 

MATERIALS AND METHODS 

Data 

Test-day milk yields (222,679) of first-parity Holstein cows in New York, Wisconsin, and 

California herds from 1990 through 2000 were adjusted additively to a constant age and lactation 

stage using adjustment factors of Bormann et al. (2002). Those factors had been obtained from a 

much larger data set, of which the data for this study were a subset. The comparability of results 

with those from other investigations of test-day evaluation methodology with US data (

66 

67 

Bormann 

et al., 2002, 2003; Gengler and Wiggans, 2002; Wiggans et al., 2002) and the availability of 

estimates for effect of age and lactation stage based on a large population were considered to be 

of sufficient benefit to offset possible effects on variance reduction for random effects from data 

adjustment prior to analysis. Eventual shifts in the overall mean for the data were accommodated 

by adjusting a fixed effect so that the mean was kept in the model. 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

This approach also allowed the direct use of mean herd yield levels. Four data subsets of 

similar size (55,604 to 55,685 records) were defined by mean herd yield. Herds could change 

yield levels after 2 yr. Difference in mean test-day milk yield of first-parity cows in the highest 

(37.4 kg) and lowest (23.3 kg) subsets for herd yield was 14.1 kg. The complete data set also was 

grouped into three randomly selected subsets, which had similar size (72,582 to 76,641 records) 

and mean test-day milk yield (29.0 to 30.7 kg). The three random data subsets were used to 
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compute genetic correlations across environments, which were then averaged over the three data 

sets. 

80 

81 

82 

83 

,

 

Covariance Structure 

Consider the following RRM: 

i i
i

= +y Xt Q u e+∑  84 

85 

86 

87 

88 

where y = vector of test-day records, t = vector of fixed effects, X = incidence matrix linking y 

and t,Q = matrix of regressors,u = vector of random effects i, and e = vector of residuals. The 

test-day record is nested in a given lactation of a given animal. The covariances among 

observations for that lactation and animal are 

i i

i i i
i

Var( ) = Var( ) + Var( ),y Q u Q e′∑  89 

90 which can be rewritten as 

i i i
i

Var( ) = + ,y Q G Q R′∑  91 

92 

93 

94 

95 

j

whereG = elementary covariance matrix for random effects and R = Var(e); creates the 

covariance components linked to random effect i in Var(y). At this stage, the matrices of 

regressors can be used to generate HC structures by modeling the covariances as functions of 

regression variables: 

i i i iQ G Q′

j ij ij ij
i

Var( ) = + ,y Q G Q R′∑  96 

97 

98 

99 

whereG = covariance matrix of effect i in environment j. ij

At present, direct estimation of heterogeneousG in an RRM is too complex for available 

procedures. An indirect way to estimate heterogeneous is to decompose the matrix into 

ij

ijG
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orthogonal components through a transformation matrix (T), which would renderG independent 

of the heterogeneity strata and result in 

ij100 

)101 

j

0i ij ij ij( = ′G T G T

j i
i

Var( )y = ∑

1ij ij( )Q T −

0iG

1 1j ij 0i ij ij( ) ( ) + .Q T G T Q R− −′ ′  102 

)103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

Conceptually, the simple transformation of regressors “bends” the matrix of coefficients 

through Q Q . This approach allows replacement of G which differs by 

environment j and effect i, with a single matrix for every random effect i. Thus, HC 

structures can be modeled easily for both nongenetic and genetic random effects. 

i j*(T

ij ij ij* *= =T ij,

0iG

The initial underlying assumption is that genetic correlations between environments are unity 

for every transformed regression. Transformation of regressors was done independently for the 

different random effects. Possible dependencies among the variation of some of those random 

effects (e.g., genetic and permanent environmental) were not considered. 

Although several possibilities exist for T, an obvious candidate is the inverse of the lower 

Cholesky decomposition because then becomes an identity matrix. The Cholesky matrix is 

also a matrix generalization of the square root of the covariances. The approach used was a 

simple generalization of the standardization of random effects approach used in France (Robert-

Granié et al., 1999). The technique of rescaling random coefficients in mixed linear models so as 

to make them orthogonal via a Cholesky triangular transformation of the variance covariance 

matrix has been previously reported (e.g., 

115 

116 

Groeneveld, 1994). The advantage of doing this in a 

random regression or random coefficient models setting is that those models allow the direct 

integration of the transformation. The order of random regressions can be chosen so that the first 

transformed regression is defined as the standardized constant term. 

117 

118 

119 

Robert-Granié et al. (2002) 120 

114 
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extended this idea to heteroskedastic random regression models. For this study, heterogeneity 

in was modeled by modeling . However, instead of applying a generalized expectation-

maximization (EM) algorithm (e.g. 

121 

122 ijG ij*T

Foulley and Quaas, 1995), T  was modeled a posteriori 

based on G  matrices obtained from the different environments, where the distinction among 

environments was based on a continuous variate (e.g., yield level within heterogeneity strata). 

Integrated modeling similar to the methods proposed by 

ij*123 

124 

125 

ij

Robert-Granié et al. (2002) is 

mathematically straightforward but was not used in the present study because of computing 

complexity.  

126 

127 

128 

129 

130 

131 

Estimation of covariance components. Covariance components were estimated using a 

combination of EM and average-information REML. If positive definite values could not be 

obtained through average-information REML, estimates were obtained through a combination of 

EM and average-information REML (Druet et al., 2003). 132 

133 

)134 

135 

136 

137 

,138 

139 

140 

Modeling of covariance components based on herd yield. Estimated covariance 

components were transformed into lower Cholesky triangular matrices , where i = 

random effect and j = herd yield levels (environment). Every coefficient k of was then 

modeled as a constant, linear, and quadratic function of standardized milk yield s for class mean 

m based on herd, test-day, and milking frequency: 

ij(G ijL

ijL

2
ijk 0ik 1ik j 2ik j ijkl s s= α + α + α + ε  

where α = regression coefficient; s = −1 + 2[(m − 23.3)/(36.8 − 23.3)] = standardized milk yield 

when 23.3 and 36.8 kg of milk were means for lowest and highest herd-time yield classes, 
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respectively, −1 < s < 1, and m = mean herd milk yield for a 2-yr period; and ε = residual. In 

matrix algebra, for every effect i, , or 

141 

i142 

k

i i  =   + l Sα ε

k

k k

i1 i1 i1

ik ik ikn

in in in

,

     
     
     
      = ⊗ +      
     
          

l

l I S

l

M M

M M

α ε

α ε

α ε

M

M

143 

144 

145 

146 

147 

148 

 

where ⊗ = Kronecker product and nk = number of nonzero elements in L. 

Estimates of αik ( were obtained independently for every effect i and every coefficient k 

by solving The solutions allowed definition of the transformation matrix as a 

function of standardized yield s. Observed covariances were regressed towards expected 

covariances based on herd yield. This regression towards expected variances is similar to the 

method described by 

ikˆ )α

( ) 1−′S Sik ikˆ .′= S lα

Robert-Granié et al. (2002); however, their method was integrated, and the 

parameters of the dispersion models were estimated using generalized EM REML (e.g., 

149 

Foulley 

and Quaas, 1995). 

150 

151 

A second major difference from the method of Robert-Granié et al. (2002) was that the 

variances and covariances in this study were modeled with a global generalized square-root 

(Cholesky triangular) transformation of the entire matrix instead of a log transformation for 

variances and no transformation for correlations. Modeling under the Cholesky transformation 

guaranteed positive definiteness of the covariance matrices. The method of 

152 

153 

154 

155 

Robert-Granié et al. 

(2002) does not guarantee correlations in the parameter space (between −1 and 1) but has the 

advantage of being an integrated approach. Further research should be able to merge the indirect 

method in this study with the direct method of 

157 

158 

Robert-Granié et al. (2002). 159 

156 
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Heterogeneous error variances were modified in a similar fashion by replacing Q with an 

identity matrix. Mixed-model equations were then adjusted by weighting according to the 

assumed inverse of the residual covariance of a given record. 

160 

161 

162 

163 

164 

 

Applied Models 

Three different models were applied to the various data sets to estimate covariance 

components and to calculate EBV. Table 1 summarizes application of the models to the data sets.  165 

166 

167 

168 

169 

170 

171 

172 

Covariance estimation based on herd yield. The four data subsets defined by mean herd 

yield were used to estimate four sets of covariance components with the RRM 

[Model 1] h a p ,y Xt Q h Q a Q p e= + + + +

where y = vector of test-day records for milk yield; t = vector of fixed class effects for herd, test 

day, and milking frequency; h = vector of random effects for 2-yr time period within herd (herd-

time effects); a = vector of animal effects (breeding values); p = vector of random permanent 

environmental effects; e = residual effect; X = incidence matrix that links y and t; Q  Q  

and = matrices of constant, linear, and quadratic modified Legendre polynomials (

h, a,

pQ Gengler et 173 

al., 1999): r0 = 1, r1 = 30.5x, and r2 = (5/4)0.5(3x2 − 1), where x = −1 + 2[(DIM − 1)/(365 − 1)], 

that link y and h, a, and p, respectively. A previous study (

174 

Gengler and Wiggans, 2001) of the 

same data had found that the portion of total variance explained by a herd-time effect was not 

negligible; therefore, h was included to allow herd-specific lactation curves. The covariance 

structure for Model 1 can be summarized as 

175 

176 

177 

178 
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h 0

0

p 0
2

n e

Var = ,

   ⊗
  
   ⊗
  
   ⊗
  
   σ   

I H 0 0 0h

0 A G 0 0a

0 0 I Pp

0 0 0 Ie

0
179 

180 

σ181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

 

and 

2
h h 0 h a 0 a p p 0 p n eVar( ) ( ) ( ) ( ) ,′ ′ ′= ⊗ + ⊗ + ⊗ +y Q I H Q Q A G Q Q I P Q I  

where I = identity matrix; H0, G0, and P0 = elementary covariance matrices among the three 

random regressions for herd-time, genetic, and permanent environmental effects, respectively; A 

= additive relationship matrix, h = number of herd-time effects, p = number of animals with 

records, and n = number of test-day records. 

Second-order polynomials were used as a compromise between model complexity and desire 

to achieve a reasonably good fit. Preliminary research had shown that the constant, linear, and 

quadratic polynomials were highly related to the first, second, and third eigenvectors, which 

explained a large part of the variances for all three random effects. 

Computation of EBV with and without HC adjustment. The complete data set was analyzed 

with and without HC adjustment. To provide EBV without HC adjustment, the regular mixed-

model equations from Model 1 were solved using mean coefficients ijk 0ik ).= α(1  To provide 

EBV with HC adjustment, mixed-model equations with transformed regressors based on 

standardized milk yield s were solved: 

192 

193 

194 

195 h(s) a(s) p(s) (s)* * *= + * + * + * + w *,y Xt Q h Q a Q p e [Model 2] 
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whereQ and = matrices of transformed regressors dependent on standardized herd 

yields s and linking y with and p and = square root of the inverse of the weight 

dependent on s. The associated covariance structure was 

h(s)* , a(s)* ,Q p(s)*Q

h

196 

197 

198 

*, *,a * (s)w

h 3

3

p 3

*

*
Var = ,

*

*

   ⊗
   
   ⊗
   
   ⊗
   
      

h I I 0 0 0

a 0 A I 0

p 0 0 I I

e 0 0 0

0

0

W

 199 

200 

201 

.202 

203 

204 

where W = I , a diagonal matrix with diagonal elements equal to the inverse of the weight 

associated with the record. Covariance of the observations based on s was  

2
)s(n w

2
h(s) a(s) a (s) p(s) p(s)h(s)(s) h 3 3 p 3 n (s)Var( ) ( ) * * ( ) * * ( ) * w* ′ ′ ′= ⊗ + ⊗ + ⊗ +y Q I I Q Q A I Q Q I I Q I  

Genetic correlation across environments ≠ 1. Although Model 2 allows for differences in 

genetic covariance across herd yield levels, it does not allow genetic correlation across 

environments to differ from 1. Recently, several studies (e.g., Castillo-Juarez et al., 2002) used 

RRM as an approach to address this issue.  

205 

206 

207 

208 

209 

a ,*210 

s)/2.211 

212 

Model 2 could be generalized by including separate genetic effects for high and low yield. 

Every observation then potentially would be influenced by two sets of genetic effects. Genetic 

effects for every animal then could be defined continuously from high to low yield as 

 where  and  are coefficients for environments defined as a 

function of s with and The coefficients and 

also would link observations with s. If an observation was at the maximum herd yield level 

1(s) 2(s)(s) 1 2
a a* *= φ + φ

1(s) = (φ

2(s)φ

1φ

)/2

2φ

2(s)1 + s 1(s)1 (1φ = − φ = − 1(s)φ
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(s = 1), then and if an observation was at the minimum low herd yield level (s 

= −1), then and  

1(1) 1φ =

1( 1) 0−φ =

Var

2(1) 0;φ =

2( 1) 1.−φ =

=

  ⊗
 
  
  
  
  
 
 
 
  

h(s) h

a (s)1(s)

p(s)

(= ⊗

h

a

a

p

e

(s)Var( )y Q I

Q I

kiag= d  ϕ 

213 

214 

215 

216 

217 

218 

Given those conventions, Model 2 easily was rewritten to allow differences in covariances 

across environments and also genetic correlations that differed from 1: 

[Model 3] 

Covariance matrices for Model 3 were 

h 3

31

32

p 3

n

*

,

*

*

 
 
 ∗  
  ⊗ ∗    
 

⊗ 
 
 

I I 0 0 0

I D
0 A 0 0

D I

0 0 I I

0 0 0

 

0

I

219 

220 and 

h(s)3

a (s)1(s)3

a(s)2(s)
3 a (s)2(s)

2
p(s)p 3 n (s)

)* *

*
* *

*

( ) w ,* *

+′

   φ ′ 
    φ φ ⊗       φ ′ 

⊗ +′

I Q

QI D
Q Q A

D I Q

I Q I

 +221 

where D  is a diagonal matrix of dimension 3 with the correlation between 

transformed regressors in the two environments. In Model 3, differences in covariances across 

environments were accounted for by the Cholesky transformation as in Model 2; however, 

correlations across environments that differed from 1 were modeled based on separation into 

environmentally dependent genetic effects. Covariance of the total genetic effects could be 

written as 

222 

223 

224 

225 

226 

227 

*.h(s) a(s) a (s) p(s)(s) 1(s) 2(s) (s)1 2
h w* * * * * *= + + φ + φ + +y Xt Q Q a Q a Q p e
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1(s)3

(s) 1(s) 2(s)
3 2(s)

2 2
1(s) 3 2(s) 3 1(s) 2(s)

Var( )*

( ) ( ) 2 (

  φ 
    = φ φ ⊗     φ   

= φ ⊗ + φ ⊗ + φ φ ⊗

I D
a A

D I

A I A I A D).

228 

229 

230 

I A I231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

a243 

),244 

.5), .245 

246 

 

When the correlation between transformed regressors in the two environments tended to 1, 

covariance of the total genetic effects simplified to 

2 2 2
(s) 1(s) 2(s) 1(s) 2(s) 3 1(s) 2(s) 3 3Var( ) ( 2 )( ) ( ) ( )* = φ + φ + φ φ ⊗ = φ + φ ⊗ = ⊗a A I A  

as in Model 2. 

To determine if the introduction of a genetic correlation across environments that differed 

from 1 improved model fit, likelihood ratio tests were conducted with covariance components 

estimated from each of the three random data subsets using Models 2 and 3.  

The estimated covariance components from Model 3 were applied to calculate EBV for the 

complete data set. 

 

Comparison of EBV 

To demonstrate applicability of the methods and models, EBV were computed and expressed 

on a 305-d lactation basis; EBV from Models 2 and 3, which included transformation, were 

backtransformed to a mean scale. For cows, the same reverse transformation was done for the 

sum of EBV and permanent environmental effects. For genetic correlation ≠ 1, EBV for every 

animal were defined continuously from high to low yield as a  where 

 and reported for three environments: high herd yield  

medium herd yield  and low herd yield  

Rankings were created for cows and for sires with ≥10 daughters based on unadjusted EBV, 

(s) 1(s) 2(s)1 2
,* * *= φ + φa

1(1) 2(1)( 1;φ = φ

1( 1) 2( 1)( 0;− −φ = φ

1(s) 2(s) 1,φ + φ =  0=

 1)=1(0) 2(0)( 0.5;  0φ = φ =
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HC-adjusted EBV with genetic correlation = 1, and HC-adjusted EBV with genetic correlation 

≠ 1. 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

One consequence of not applying adjustments for heterogeneity of covariance is that 

solutions in high-variance environments are more variable than in low-variance environments. 

To test if the proposed HC adjustment method corrects this problem, variances of regression 

solutions for genetic and permanent environmental effects were computed in every herd, test-

day, and milking-frequency class and compared with mean milk yield for that class. If the HC 

adjustment was successful, correlation between those variances and class mean yield should be 

reduced. 

 

RESULTS AND DISCUSSION 

Covariance Components Based on Herd Yield 

Covariance components were estimated with Model 1 and then modeled and expressed as 

functions of s. For simplicity, only mean variances with s = 0 (without HC adjustment) and 

extreme variances with s = −1 or s = 1 (with HC adjustment) are reported. Heritabilities for test-

day milk yields (Figure 1) were substantially higher for high-yield than for low-yield herds and 

reached ∼25% compared with ∼15%, respectively. Medium-yield herds had intermediate 

heritability. However, the heritability trends were only somewhat similar to trends for 

permanent-environmental variance (

261 

262 

263 

Figure 2) as only high-yield herds differed substantially with 

lower relative permanent-environmental variance as compared with herds with other yield levels. 

Combined variance for genetic and permanent environmental effects may be similar across herd 

yields, but a larger portion of that combined variance may be genetic for high-yield herds. 

264 

265 

266 

267 
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Relative herd-time variances (Figure 3) did not show similar patterns. Low-yield herds had 

higher herd-time variance at start of lactation, whereas variance for medium-yield herds was 

higher at start and end of lactation. For high-yield herds, variance was high at start of lactation, 

decreased until about 65 DIM, then increased until around 220 DIM to the same variance level as 

at start of lactation, and again decreased through the end of lactation. No explanation was 

apparent for the differing relative variance patterns, and additional research is required to 

investigate possible negative effects. 

268 

269 

270 

271 

272 

273 

274 

275 Relative variance patterns should be considered together with the pattern for phenotypic 

variance (Figure 4) over lactation. Plots for phenotypic variance were similar in shape but clearly 

not identical across herd yield levels. For low-yield herds, variances were nearly constant with 

rather limited increases at start and end of lactation. Compared with low-yield herds, phenotypic 

variances for medium-yield herds tended to be higher and increase more at end of lactation. For 

high-yield herds, overall phenotypic variance and rate of increase in variance with DIM was 

substantially greater than for the other yield levels. The variance increase with herd yield level 

could result primarily from better management in high-yield herds, which allowed cows to 

express differences. The large heritability difference seems to confirm that animals in high-yield 

herds express relatively more genetic variance than do those in low-yield herds. The results of 

this study support that lactation stage and herd yield level should be considered when developing 

adjustments for heterogeneity of phenotypic covariance. 

276 

277 

278 

279 

280 

281 

282 

283 

284 

285 

286 

287 Test-day milk yield at 5 DIM was compared with test-day yield at other DIM. Although 

phenotypic correlations (Figure 5) were remarkably stable, genetic correlations (Figure 6) 

decreased with herd yield level, especially for low-yield herds. Using inflated correlations could 

288 

289 
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impact animal rankings, especially for dairy bulls with early evaluations based primarily on 

daughter records from early lactation in low-yield herds. 

290 

291 

292 

293 

294 

295 

296 

297 

298 

299 

300 

 

Estimation of Genetic Correlations Across Environments 

Likelihood ratio tests for the three random data subsets used to compare Models 2 and 3 

showed that in all cases the introduction of additional parameters in the models significantly (P < 

0.001) improved the fit; likelihood ratios were 75.93, 84.24, and 65.15. 

Means of estimated REML genetic correlations across environments from the three random 

data subsets were 0.972, 0.799, and 0.968 for the three Legendre coefficients. Standard 

deviations were 0.025, 0.211, and 0.041, respectively, which indicated a rather large degree of 

uncertainty in the estimation of the correlation for the second regression. Because of the 

variation in subset genetic correlations, no definitive conclusions can be made about genetic-

environmental interactions. Genetic differences across environments were reported by Veerkamp 

and Goddard (1998). In this study, the definition of environments and data sampling based solely 

on mean herd yield did not allow identification of the primary reason for genetic correlations of 

<1. A recent study by 

302 

303 

Raffrenato et al. (2003) suggests that regional differences can be a factor, 

and data for this study were pooled from three states with quite different environmental 

conditions. 

301 

304 

305 

306 

307 

308 

309 

 

Comparison of Rankings With and Without HC Adjustment 

Rank correlations of cow evaluations with and without HC adjustment were >0.99 for EBV 

and >0.98 for permanent environmental effect. However, some reranking did occur for the top 10 

cows (Table 2) and for the top 10 bulls with ≥10 daughters with records (Table 3). The most 310 
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reranking occurred for EBV plus permanent environmental effects (Table 2). Although EBV 

were quite stable (probably because families of animals seldom were concentrated in one 

environment and ties existed through the relationship matrix), HC adjustment resulted in some 

reranking of the top bulls based on evaluations without adjustment. Four (genetic correlation  = 

1) and 5 (genetic correlation ≠ 1) bulls of the original top 10 were eliminated. 

311 

312 

313 

314 

315 

316 

317 

For genetic correlation ≠ 1, all animals had breeding values across all environments because 

of the continuous description of genetic effects as a function of standardized milk yield. As 

shown in Tables 2 and 3, animal rankings differed by mean herd yield. Evaluations of some of 

the top 10 bulls based on evaluations without HC adjustment were greatly affected by HC 

adjustment, with changes up to 121 kg between low- and high-yield environments. With 

additional research to verify the level of correlation across environments, this observed 

difference could lead to the use of the proposed HC adjustment method to create a ranking of 

bulls specific to a herd based on the yield level of that herd (

318 

319 

320 

321 

322 

Castillo-Juarez et al., 2002). 323 

324 

325 

326 

 

Comparison of Class Variances With and Without HC Adjustment. 

Correlations of variances of random regression solutions for genetic and permanent 

environmental effects within herd, test-day, and milking-frequency class with class mean yields 

(Table 4) were smaller with HC adjustment than without it. The reduction in correlation was 

much smaller for genetic than for permanent environmental solutions (for which correlations 

became nearly 0). The anticipated reason for the difference in the effect of HC adjustment for 

genetic and permanent environmental effects was the assumption of a perfect genetic correlation 

across environments. However, even with genetic correlation ≠ 1 (

327 

328 

329 

330 

Table 4), a similar pattern 

was observed. If the effect of HC adjustment was small, only a few animal rankings would 

331 

332 

 
18 



 

change as was observed in the example data sets (Tables 2 and 3). Correlations for genetic 

solution variances with class mean yield were reduced somewhat with HC adjustment and were 

smallest for low-yield herds. 

333 

334 

335 

336 

337 

 

CONCLUSIONS 

Currently, the methods used for HC adjustment in genetic evaluations with test-day models 

are often preadjustments (International Bull Evaluation Service, 2004). Some evaluation centers 

are testing or considering methods (e.g., 

338 

Lidauer and Mäntysaari, 2001) based on the approach of 339 

Meuwissen et al. (1996), but no country is yet adjusting regressions. Although this study was not 

directly related to current HC adjustment methods, some of its results could influence the choice 

of future methods. Genetic and nongenetic covariance structures were found to be different 

according to herd milk yield. Differences were found not only for phenotypic covariances but 

also for heritability, permanent environmental, and herd-time variances. Current adjustment 

methods used by all major dairy countries except the United States and The Netherlands 

(

340 

341 

342 

343 

344 

345 

International Bull Evaluation Service, 2004) consider the variance ratios to be constant. High-

yield herds had higher heritabilities for test-day milk yields and lower relative permanent 

environmental variances. 

346 

347 

348 

349 

350 

351 

352 

353 

354 

All currently used adjustment methods either correct data prior to analysis or have been 

integrated into the evaluation system and affect variances. This study showed that a method 

based on transformed regressors for random regression effects can be used to address the issue of 

heterogeneity of test-day yield covariances. As shown in the example data sets, some animal 

reranking occurred because of the effect of this transformation on both genetic and permanent 

environmental effects. 
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A challenge in the developed HC adjustment method is that nongenetic and genetic 

covariance matrices have to be estimated for different environments prior to calculation of 

genetic evaluations. Those additional calculations could require substantial computing resources 

and time, and the estimates could have large sampling errors. However, as shown with Model 3, 

the method can be adapted to allow genetic correlations between environments to differ from 1, 

which produced animal reranking in the example data sets. Correlations of regression coefficient 

variances for genetic and permanent environmental effects within herd, test-day, and milking 

frequency class with class mean milk yield were reduced with HC adjustment. 

355 

356 

357 

358 

359 

360 

361 

362 

363 

364 

365 

366 

367 

368 

369 

370 

371 

372 

373 

374 

375 

376 

The HC adjustment method that was developed suggests innovative solutions for a number of 

issues related to heterogeneity of covariances and their impact on genetic evaluation systems. 

First, the general concept can be used for data adjustment both prior to analysis (single 

transformation of regressors) and during analysis (transformation and update of transformation 

matrices). Because every regression of each test-day yield of a given cow can be adjusted, 

extreme flexibility can be achieved within the modeling process. For example, differences in 

covariance structures among breeds can be accommodated for multibreed evaluation. Crossbred 

animals then can be included by interpolation based on the proportion of genes from each breed 

of ancestors. This particular benefit could be especially important if breeds are to be evaluated 

together because of their simultaneous presence in contemporary groups or the presence of 

crossbreds in contemporary groups (e.g., Jerseys and Holsteins in the United States and dual-

purpose Belgian Blues and Holsteins in Belgium). The method developed also allows genetic 

correlations between environments to differ from 1 and has potential use if different bull 

rankings are needed according to source of covariance differences. 
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Table 1. Applied models, data sets, and analysis results. 

Analysis results 

Applied 
model Model description All data 

Subsets based 
on mean herd 
yield (n = 4) 

Random 
subsets 
(n = 3) 

1 No heterogeneous covariance 
adjustment; genetic correlation 
across environments = 1 

EBV  Covariance 
component 
estimates 

— 

2 Heterogeneous covariance 
adjustment; genetic correlation 
across environments = 1 

EBV — Covariance 
component 
estimates1 

3 Heterogeneous covariance 
adjustment; genetic correlation 
across environments ≠ 1 

EBV — Covariance 
component 
estimates 

1Computations used for likelihood ratio tests to compare models 2 and 3. 
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Table 2. Comparison of EBV, EBV plus permanent environmental (PE) effects, and rankings for 

evaluations with and without heterogeneous covariance (HC) adjustment and considering genetic 

correlation across environments and mean herd yield (low, medium, or high) for top 10 cows. 

Evaluation with HC adjustment 

Genetic correlation ≠ 1 Evaluation without 
HC adjustment 

Genetic 
correlation = 1 High Medium Low 

EBV (kg) and rank 
(in parentheses) EBV (kg) and rank (in parentheses) 

1245 (1) 1398 (1) 1410 (1) 1414 (1) 1419 (1) 
1197 (2) 1203 (3) 1172 (3) 1191 (3) 1210 (3) 
1182 (3) 1242 (2) 1200 (2) 1213 (2) 1227 (2) 
1154 (4) 1155 (4) 1144 (6) 1148 (4) 1153 (4) 
1149 (5) 1148 (5) 1133 (7) 1137 (7) 1140 (5) 
1143 (6) 1135 (7) 1166 (4) 1141 (5) 1115 (9) 
1106 (7) 1081 (11) 1040 (19) 1085 (11) 1131 (6) 
1101 (8) 1146 (6) 1150 (5) 1140 (6) 1129 (7) 
1084 (9) 1071 (13) 1056 (15) 1060 (17) 1064 (16) 
1079 (10) 1042 (17) 1022 (20) 1034 (20) 1046 (20) 

EBV + PE (kg) and rank 
(in parentheses) EBV + PE (kg) and rank (in parentheses) 

4606 (1) 4563 (6) 4554 (6) 4592 (6) 4631 (5) 
4538 (2) 4238 (9) 4239 (9) 4276 (9) 4314 (8) 
4501 (3) 4627 (5) 4615 (5) 4619 (5) 4623 (6) 
4480 (4) 4720 (2) 4741 (2) 4751 (2) 4760 (2) 
4411 (5) 5090 (1) 5087 (1) 5100 (1) 5113 (1) 
4365 (6) 3621 (24) 3611 (24) 3601 (25) 3590 (28) 
4328 (7) 4675 (3) 4680 (3) 4699 (3) 4718 (3) 
4204 (8) 3991 (13) 4037 (11) 3942 (14) 3848 (18) 
4195 (9) 4655 (4) 4647 (4) 4676 (4) 4706 (4) 
4050 (10) 4483 (7) 4466 (7) 4476 (7) 4486 (7) 
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Table 3. Comparison of EBV and rankings for evaluations with and without heterogeneous 

covariance (HC) adjustment and considering genetic correlation across environments and mean 

herd yield (low, medium, or high) of daughter for top 10 bulls with ≥10 daughters with records. 

EBV (kg) and rank (in parentheses) based on 
evaluation with HC adjustment 

Genetic correlation ≠ 1 

EBV (kg) and rank 
(in parentheses) 
based on evaluation 
without HC 
adjustment 

Daughters 
(no.) 

Genetic 
correlation = 1 High Medium Low 

1099 (1) 54 1111 (1) 1168 (1) 1132 (1) 1097 (1)
 984 (2) 67  921 (2)  961 (2)  929 (2)  896 (3)
 926 (3) 159  900 (3)  920 (3)  907 (3)  893 (5)
 898 (4) 10  851 (7)  832 (7)  844 (8)  855 (9)
 869 (5) 21  776 (18)  769 (17)  783 (16)  796 (16)
 867 (6) 141  869 (5)  862 (4)  857 (5)  851 (10)
 861 (7) 10  842 (9)  839 (6)  838 (9)  836 (12)
 856 (8) 222  803 (11)  750 (20)  790 (15)  829 (13)
 829 (9) 12  825 (10)  773 (15)  832 (10)  892 (6)
 823 (10) 16  756 (21)  771 (16)  776 (19)  782 (21)
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Table 4. Correlations of variances of random regression solutions for genetic and permanent 

environmental effects within herd, test-day, and milking-frequency class with class mean yields 

with and without heterogeneous covariance (HC) adjustment and considering genetic correlation 

across environments and mean herd yield (low, medium, or high). 

Correlation with class mean yield 

HC Adjustment 

Genetic correlation ≠ 1 Model 

Effect 

Legendre 
regression 
coefficient1 

No HC 
adjustment 

Genetic 
correlation = 1 High Medium Low 

Genetic r0 0.47 0.42 0.45 0.42 0.39
 r1 0.57 0.41 0.52 0.40 0.27
 r2 0.56 0.39 0.44 0.40 0.36
Permanent 
environmental r0 0.48 −0.02 −0.02 −0.02 −0.02
 r1 0.56 0.12 0.13 0.13 0.13
 r2 0.54 0.10 0.10 0.10 0.10

1r0 = 1, r1 = 30.5x, and r2 = (5/4)0.5(3x2 − 1), where x = −1 + 2[(DIM − 1)/(365 − 1)].
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Figure 1. Heritability of test-day milk yield by DIM for herds with low (×), medium ( ), or 

high (•) yield. 
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Figure 2. Relative variance of permanent environmental effect on test-day milk yield by 

DIM for herds with low (×), medium ( ), or high (•) yield. 
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Figure 3. Relative variance of herd-time effect on test-day milk yield by DIM for herds with 

low (×), medium ( ), or high (•) yield. 
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Figure 4. Phenotypic variance of test-day milk yield by DIM for herds with low (×), 

medium ( ), or high (•) yield. 
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Figure 5. Phenotypic correlation of test-day milk yield at 5 DIM with test-day yield at other 

DIM for herds with low (×), medium ( ), or high (•) yield. 
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Figure 6. Genetic correlation of test-day milk yield at 5 DIM with test-day yield at other 

DIM for herds with low (×), medium ( ), or high (•) yield. 
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