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non-measured traits. Emphasis will be on, but 
not limited to, milk yield for Holsteins. 
 
Material 
National genetic evaluation results for 
Holstein milk yield used in the March 2006 
Interbull test evaluation were considered in 
this study. Variables potentially explaining 
variation associated with estimated rG were 
obtained from three sources, and accordingly, 
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current post-processing of rG. 

National genetic evaluation descriptors 
were taken from the forms that the national 
genetic evaluation units use to describe their 
evaluation models (Form GE; available on 
Interbull’s homepage). The descriptors that 
were considered here were: heritability, 
parities included (>3 treated as 3 parities), 
test-day records or not, repeatability model or 
not, analysed simultaneously with 
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Results and Discussion 
Prediction of prior genetic correlations. The 
dependent variable that gave the best fit was 
rG raised to the power of 5 (6 equally good). 
The percent variation explained by the best 
model for (rG)5 was 47.1 % whereas it was 
44.6 % for rG. The best model for (rG)5, based 
on Mallow’s C(p), was: (rG)5 = µ + b1×milk + 
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Use of prior genetic correlations. One feature 
of the outlined procedure to obtain prior rG is 
that standard errors are available. These can 
be used to give appropriate weights to each 
specific prior relative to the estimated rG. This 
and the fact that each prior mean is obtained 
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Table er timates heir 
s ors (SE  and nifica l (p) 
for ]. 
Va b SE ) 
µ -0. 0.000 586 0.11 
milk 0.4 0.000

rass 0.1 0.001
 0.2 0.001

.013

.032
0.02 0.042

CB ( . 2 0.000

91 0.11  
g 03 0.03  
wind 35 0.07  
temp 0.187 0.07 0
her 0.144 0.07 0
par 0.042 
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 2. Mean b s nd mean squared error 
(MS ) of predicte  p iors on trans  and 
orig al scale for e c  country1. 
 Transfo   Orig le
 Bias M s MSSE  Bia E
AUS 0. 1 9 0.0 6 -0.041 0 7  -0.01 0
BEL 0.023  0.035 0.007

N 0. 2 5 0.005
E 0. 36 1 0.007
E 0.051  0.099 0.013

EU 0.016  0.034 0.006
S 0. 17 9 0.003
P 0. 2 4 0.004
T 0.030  0.102 0.028
A 0. 3 5 0.006
R 0.015  0.021 0.004
N 0.017  0.027 0.005

 0.008
.065 0.010

ITA 0.007 0.016  0.016 0.005
JPN -0.103 0.038  -0.028 0.007
NLD -0.048 0.021  -0.009 0.004
NZL 0.106 0.016  0.087 0.012
POL -0.057 0.027  -0.014 0.005
SVN 0.016 0.033  0.028 0.012
USA -0.015 0.021  0.008 0.005
ZAF 0.178 0.037  0.148 0.027

0.056 
CA  -0.046 0 5  -0.00
CH  -0.032 0   -0.00
CZ  0.188 
D  0.053 
DF -0.037 0   -0.00
ES -0.062 0 5  -0.01
ES 0.108 
FR  -0.094 0 6  -0.02
GB  0.029 
HU  0.044 
IRL -0.058 0.030  -0.013
ISR 0.094 0.021  0

1) Mean bias original scale: Σ[rGprior – rG]/n; 
transformed scale: Σ[(rGprior)5 – (rG)5]/n 

c correlations (rG) 
enetic correlations 
d without (prior) 
bitrary differences 
or mean ± SD of 

100,000 samples from formula [1] and [2], 
es  country 
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  prior prior+ 

Table 3. Estimated geneti
for New Zealand, prior g
obtained with (prior+) an
forced harmonisation of ar
between countries. The pri

r pectively, are given for each
c bination. 

rG

A 5 0.88 ± 0.06 US 0.8  0.81 ± 0.14 
B 6 0.86 ± 0.08 
C 6 0.87 ± 0.08 
C 2 0.85 ± 0.08 
C 1 0.83 ± 0.09 
D 8 0.86 ± 0.07 
D  0.85 ± 0.08 
E 8 0.84 ± 0.08 
E 7 0.87 ± 0.07 
F 4 0.86 ± 0.07 
G 1 0.87 ± 0.07 
H 3 0.85 ± 0.08 
IR 1 0.93 ± 0.05 
IS 4 0.83 ± 0.09 
IT 7 0.85 ± 0.08 
JPN 0.7 0.55 ± 0.44 0.84 ± 0.08 
NLD 0.69 0.67 ± 0.32 0.85 ± 0.08 
POL 0.69 0.70 ± 0.30 0.89 ± 0.06 
SVN 0.75 0.73 ± 0.27 0.88 ± 0.06 
USA 0.66 0.76 ± 0.21 0.84 ± 0.09 
ZAF 0.63 0.46 ± 0.50 0.84 ± 0.09 

EL 0.6  0.64 ± 0.36 
AN 0.6  0.71 ± 0.28 
HE 0.7  0.61 ± 0.39 
ZE 0.6  0.52 ± 0.46 
EU 0.5  ±0.68  0.32 
FS 0.7 0.62 ± 0.38 
SP 0.6  0.57 ± 0.43 
ST 0.4  0.69 ± 0.31 
RA 0.7  0.67 ± 0.33 
BR 0.7  0.74 ± 0.24 
UN 0.6  0.61 ± 0.39 
L 0.8  0.87 ± 0.10 
R 0.5  0.55 ± 0.44 
A 0.6  0.65 ± 0.35 

 


