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ABSTRACT 

For estimation of dominance effects 
and dominance variance, the inverse of a 
dominance relationship matrix is re- 
quired. Dominance effects can be parti- 
tioned into sire x dam or sire x maternal 
grandsire subclass effects that are in- 
herited and residuals within subclass that 
are not inherited. The subclass effects 
have immediate use in predicting per- 
formance of offspring from prospective 
matings. A rapid method for directly 
computing the inverse relationship matrix 
of subclass effects is presented. "he pro- 
cedure is similar to Henderson's simple 
method of computing an inverse additive 
genetic relationship matrix. The inverse 
relationship matrix among subclass ef- 
fects consists of a contribution from each 
subclass of coefficients of a matrix of 
maximum size 9 x 9. The algorithm can 
be modified to compute the inverse of the 
relationship matrix among sire x dam or 
sire x maternal grandsine subclasses and 
among individual dominance effects. 
computing cost increases approximately 
linearly with dimensions of inverses. 
Dimensions could be several times the 
number of subclasses in the data because 
subclasses without records but providing 
relationship ties must be added. Compu- 
tation of the inverse relationship matrix 
among 136,827 sire x maternal grandsire 
subclasses in a population of 765,868 
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animals required 163 central processing 
unit seconds on an IBM 3090 and less 
than 4 Mbytes of memory. 
(Key words: dominance relationships, 
matrix inversion, noninbred populations) 

INTRODUCTION 

Genetic evaluations have been largely re- 
stricted to additive genetic models in the form 
of sire or animal models. Nonadditive genetic 
variance contributes to the genetic covariance 
among datives, which is well defined in ran- 
domly mating, noninbred populations with ge- 
netic effects composed of s m a l l  contributions 
from m y  unlinked loci (3). Including nonad- 
ditive effects in genetic evaluation models 
might improve estimation of additive effects 
and also aid in planning matings to improve 
progeny performance. 

Henderson (10) presented BLUP procedures 
(6) for mixed models including additive, domi- 
nance, additive by additive, and other genetic 
effects for randomly mating, noninbred popula- 
tions. He proposed solving mixed model equa- 
tions for total genetic merit (the sum of addi- 
tive, dominance, additive by additive, and other 
genetic effects) to reduce number of simultan- 
eous equations. Given estimates of total genetic 
merit, a, estimates of components of m have to 
be computa e.g., d = 4DM% for the vector 
of dominance effects d, where Var(m) = M and 
Var(d) = D 4  with D, a matrix of dominance 
relationships, and 4, dominance variance. For 
large data sets, however, no efficient algorithm 
exists for computing M-l; hence, mixed model 
equations should be formed for estimatiag com- 
ponents of m directly. The REML (13) estima- 
tion of variance components involves comput- 
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mg terms such as which also is re 
quired in approximations such as the tildehat 
approach (19). 
To date, no methods were available to com- 

pute inverses of relationship matrices far 
nonadditive genetic effects as efficiently as the 
rapid method to compute A-l, the inverse of 
the additive genetic relationship matrix (7, 8, 
9). Rapid construction of an inverse is possible 
by first establishing recurrence or inheritance 
patterns among effects included. Dominance 
effects are partitioned into sire x dam or sire x 
maternal grandsire subclass effects that are in- 
herited and uncorrelated residuals within sub- 
class that = not inherited An algorithm for 
rapidly computing the inverse relationship ma- 
trix among either subclass effects or among 
dominance and subclass effects in nonhbred 
populations is presented. 

MATERIALS AND METHODS 

Components of Dominance Effect 

Dominance effects result from interactions 
of pairs of genes at the same locus. An animal 
cannot transmit its dominance effect directly to 
its progeny because only one gene of each pair 

tance of dominance effects can be t r a d  
through pairs of animals. For example, if 
progeny of a particular sire and dam have high 
average dominance effects, a mating of the dam 
to a close relative of the sire or a mating of the 
sire to a close relative of the dam would also be 
expected to yield progeny with high dominance 
effects. 

Because dominance effects are not inherited 
through individuals but through pairs of 
animals, a partition of dominance effects into 
sire x dam subclass effects and subclass 
deviations is useful. Let an individual domi- 
nance effect d be partitioned as 

is transmitted to each progeny. Lnstead, inheri- 

d = f s p  + 6 E11 

where fsp represents the average dominance 
effect of many hypothetical full sibs produced 
by the individual’s sire S and dam D, and 6 is 
the individual’s deviation from the sire x dam 
subclass effect. Deviation 6 is due to Mendelian 

sampling and has an expected value of zero. 
Thus, E(dlfsp) = fsp, and fsp and 6 are unmr- 
related. 

Let  i be a hypothetical progeny of S and D 
and let j be a hypothetical progeny of K and L. 
With 4 = f s p  + and dj = f a  + Sj, covari- 
ance among dominance effects equals covari- 
ance among subclass effects or 

COV(di,dj) = COV(fspfd 121 

because all covariances involving 4 and 6, are 
zero. 

Covariances of dominance effects in 
noninbred populations can be computed from 
additive relationships ( a n )  among parents as 
CoV(di,dj) = (asKwL + asLaDK) (.25)4. Vari- 
ance of sire x dam subclass effects c$ is equal 
to covariance among full sibs due to domi- 
nance, or c$ = .25$6. Hence, 

By subtraction, variance of Mendelian sampling 
6 in Equation [l] equals 

.“d - (;f = 34 .  
Recurrence Relationship 

Inverses of variance matrices can be con- 
structed easily if recunrence relationships exist 
among effects included (7, 14). Recurrence re- 
lationships for additive effects are simple be- 
cause additive effects are averages of individual 
gene effects and each progeny received a sam- 
ple half of each parent’s genes. Thus, 

r41 ai = .5 (as + a ~ )  + +i , 

where ai, as. and aD are additive effects of 
animal i, its sire, and its dam, respectively, and 
Q represents Mendelian sampling. 

Dominance effects are not inherited as sim- 
ply as additive effects because they result from 
pairs of genes. Simple recurrence formulas for 
dominance effects can be developed by includ- 
ing effects of pairs of animals rather than indi- 
vidual animals. Parent subclass effects for sire 
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x dam subclass fsp are interactions of S with 
parents of D, interactions of D with parents of 
S, and interactions of parents of S with parents 
of D. Figure 1 illustrates these parent sub- 
classes with SS and DS denoting parents of S 
and SD and DD parents of D. Same sex sub- 
classes such as S.SD never have records but do 
provide relationship ties in the same way that 
sires provide ties among cows with records for 
a sex-limited trait. 

Because dam D received half of her genes 
from SD and half from DD, half of the gene 

expected to be identical to those in fsp. Hence, 
a simple recurrence to predict fsp is fsp = 
.5(fs,sD + fSpD) + el where el is a segregation 
residual. Another simple recurrence, using par- 
ents of the sire, is fsp = .5(fssp + fDSp) + e~ 
where e2 is a different segregation residual. A 
new recurrence formula with smaller residual 
variance than that of el or e2 can be obtained 
by combining the two previous recurrences. 
Unfortunately, the subclasses involved have 
common contributions from their ancestor sub- 
classes, for example, fS,SD = .S(fss,SD + fDS,SD 

combinations contibuting to fs,sD and f s p D  are 

+ e3 and fSSp = -5(fSS,SD fSSPD) + e4 share 
.SfSS,SD. Addition Of the parent Subclass Cmtri- 
butions in the first two recurrences and subtrac- 
tion of the redundant contributions of parent 
subclasses yields the final recurrence equation 

where e is a segregation residual with smallest 
possible variance. Because f s p  - Hfsplparent 
subclass effects) equals e, parent subclasses 
effects and residual e are uncorrelated. 
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pigare 1. Parent subclasses of tidl sib family i. 

Recurrence [SI can be derived more fo&y 
by regressing fsp on its parent subclass effects: 

fsp = b'fF + e [61 

is a vector of the eight parent sub- 
and b is a vector of corresponding 

partial regression coefficients with 

Use of Equations [6], [A, and [8] requires 
obtaining variances of and covariances among 
fsp and fp Variances equal 4 and covari- 
ance between any two subclass effects fsp and 
f u  equals (asgaDL + asLaDd 4, as given in 
Equation [3]. 

Let the nine subclasses in the order as they 
appear in Equation [5] be identified by (i. j, k, 
1, m, n, 0, p, q). Relationship matrix among 
parent subclass effects is var('p,,>//c$, or 

n 0 P 9 
.5 .O .5 .O 
.O .5 .O .5 
.5 .5 .O .O 
.O .O .5 .5 

1 .O .O .O 
.o 1 .O .O 
.O .o 1 .O 
.O .O .o 1 

[91 
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Vector of relationships between f s p  and its parent subclass effects is cW(fsp,fF)/c$, or 

S,SD S,DD SS,D DS,D SS,SD SS,DD DS,SD DS,DD 

i [ .5 .5 .5 .5 .25 .25 .25 2 5  ] [lo] 
j k  1 m n 0 P Q 

Postmultiplication of [lo] with the inverse of 
Var(fpar)/c$ as in [7] yields regression coeffi- 
cients 

with any number of missing parent subclasses, 
TOW i Of Q contains the dements Of b from 
Equation in the columns pertaining to iden- 
tified parent subclasses of subclass i. Rear- 
rangement of [ll] yields 

b' = 1.5 .5 .5 .5 -.25 -.25 -.25 -.25] 

f =  D - Q T ' E .  1121 which are identical to the coefficients in -a- 
tion [5]. Also, from Equation 181, The variancecovariance matrix of f is 

If subclasses involving more remote ances- 
tors of S and D are added, partial regression 
coefficients always equal zero, which can be 
verified using quation VI. This is similar to 
the situation with additive effects in which 
partial regression coefficients on grandparents 
are zero if parents are included. 

Inverse of Relatlonshlp Matrix of 
Subclass Effects 

Let f represent a vector of sire x dam sub- 
class effects for a population. Define the rela- 
tionship matrix for these subclass effects to be 
F = var(~/c$. Elements of F are relati~mhips 
among subclass effects such as f s p  and f u  
with numerical values (asssar. + asLaDK) as 
given in Quation [3]. 

Quaas (14) provided an alternative deriva- 
tion of the rules for finding A-I, which is 
valuable in undexstanding the structure of A 
and A-l. A similar approach can be used to 
derive rules for computing F1. 

A matrix representation of recurrences [5] 
and [6] is 

f = Q f + &  [111 

m which row i of Q has nonzero elements only 
in columns pertaining to parent subclasses of 
subclass i. If aIl parent subclasses are known as 
in [5], nonzero entries are .5 for parent sub- 

subclasses of the type fss,sD. More generally, 
Classes Of the tyPe fS,SD and -.s for parent 
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where R G  = Vd&). Finally, 

Diagonal elements of Var(~) can be calculated 
from Equation [8]. offdiagonal elements of 
Var(&) are zero if all ancestor subclasses pro- 
viding relationship ties are included in f. One 
method to ensure that all such subclasses are 
present is for each filled subclass to include all 
combinations of the sire and its ancestors with 
the dam and its ancestors. Many of these ances- 
tor subclasses do not actually provide ties and 
can be treated as missing. Parent subclasses are 
actually missing if some SS, DS, SD, or DD 
are unknown or are treated as missing when 
they provide no ties. 
Two conditions are helpful in deciding 

which subclasses should remain known: 1) a 
subclass should remain in f if any of its parent 
subclasses remain in f, and 2) a subclass should 
remain in f if f contains two or more of its 
immediate progeny subclasses, i.e., progeny 
subclasses related to it by .5. 

Use of these two conditions seems to guar- 
antee that R wil l  be diagonal. Otber, less re- 
slrictive conditions can also produce diagonal R 
but are more diffidt  to verify. I€ the above 
conditions are met, matrix R can be written as 

where Fb is the relationship matrix among un- 
known pX€2lt SUbclaSSeS (fb), and Qb Contains 
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partial regression coefficients from recurrence 
[SI pertainins to unknown parent subclasses. 
Unknown subclasses in fb can have more 

than one known progeny subclass in f, but 
contributions from unknown parents to each of 
these are independent, causing Q$b@, to be 
diagonal. A subclass in fb may have a partial 
regression coefficient in Qb of .5 for only one 
progeny subclass because of condition 2. Then, 
that particular row of  Qb will also contain 
regressions of -25 on the immediate parent 
subclasses of  the parent subclass, which are 
unknown because of condition 1. Several 
progeny subclasses in f may have regressions 
of -25 on the same unknown subclass in fb, 
but each such row of Q b  would cuntain a 
regression of .5 on a different intermediate 
unknown subclass because of condition 2. 
Thus, each row of Q b  constructs uncorrelated 
differences among effects of unknown parent 
subclasses, provided that membership in f and 
fb follows the two conditions given. 

Rules tor Cornputrng F-' 

is suggested: 
?he following procedure for computing F-1 

1. Begin with a list of animals and their 
parents (sire S and dam D). Parents not in the 
list of animals and with only one progeny may 
be treated as unknown. Parents with more than 
one progeny should be added to the list and 
assigned parent values of unknown. Step 1 is 
identical to that for A-l. 

2. Create a list of all fiied (SP) subclasses. 
Ancestor subclasses that provide ties should be 
added to this list. First, all ancestor subclasses 
can be identified by listing subclasses for sire 
with parents of the dam and dam with parents 

of the sire for each filled subclass and then 
repeating this process for the subclasses just 
added until no further ancestors are known. 
When listing ancestor subclasses, same sex sub- 
classesof animal 1 with animal2 andof animaI 
2 with animal 1 should be treated as identical. 
The list including al l  filled and all ancestor 
subclasses should be sorted so that each 
progeny subclass precedes its parent subclasses. 
Then, beginning with oldest ancestor subclass- 
es, subclasses may be declared unknown if they 
are not filled, have no known parents, and do 
not tie two or more filled descendant subclass- 
es. 

Tie status of ancestor subclasses can be de- 
termined approximately from counts formed 
when ancestor subclasses Originally are identi- 
fied. Progeny subclass f s p  would contribute 
+ 1 to parent SUbclaSSeS Of type fs,sD and fssp 
but -1 to pU€%lt subclasses Of type fSS,SD. 
Subtraction of 1 is necessary because fS,SD and 
f s s p  are both counted as progeny subclasses of 
fss,sD but both may have originated from just 
one filled subclass fsp (see Figure 1). Some 
ancestor subclasses eliminated for a count of 
less than two may be needed to preserve diago- 
nal R. These can be declared known in a final 
pass of the subclass list by adding back sub- 
classes Of type fss,sD if fs,sD and fssp are both 
known 

3. Proceed through the list of all subclasses 
and write cer&ain coefficients to disk or tape for 
each. From Equation [13], the contribution of 
subclass i to F' is 

.. I 

PCiCi 

where is diagonal element i of R-l, and Ci is 
row i of I - Q. If all eight parent subclasses of 
subclass i are known. @ = 4. and the contribu- 
tion of i to F-1 is 

SJI S.SD SJID 
i j k 
4 -2 -2 

1 1 
1 

symmetric 

S S p  DSJI SS,SD 
1 m n 
-2 -2 1 

1 1 -5 
1 1 -5 
1 1 -5 
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Fewer coefficients are contributed to P' by 
subclass i if any of its parent subclasses are un- 
known. The vector ci contains nonzero coeffi- 
cients equal to 1 for subclass i and equal to -b 
for known parent subclasses, with b computed 

ways equal .5 and -.25 if unknown status was 
determined by the two conditions stated previ- 
ously. Diagonal element i of R-' is obtained as 
Iii = 1/Var(e) with var(e) computed as in Equa- 
tion [8]. 

4. Sort the coefficients by columns in rows 
and sum those with identical row and column 
to obtain the inverted relationship matrix F' 
among sire x dam subclasses. 

In populations where sires have many but 
dams have few progeny, relationships through 
sires and maternal grandsires rather than sires 
and dams may be sufficient. If subclass is 
defined as a sire x maternal grandsire instead of 
sire x dam combination, the model for statisti- 
cal analysis of Allaire and Henderson (1) in- 
cluding sire, maternal grandsire, and sire x 
maternal grandsire interaction can be used, ex- 
cept that relationships among interactions can 
now be accounted for by an F-l as in the Ap 

from r n ~ t i o n  [q. coefficients of b will al- 

pendix. 

Prediction of Domlnance Effects 

Inheritance of dominance effects is not from 
dominance effects of ancestors but rather from 
ancestor subclass effects. Thus, the algorithm 
presented computes inverse of the relationship 
matrix among only the subclass effects. The 
vector of dominance effects d can be predicted 
by solving for predictions of f and backsolving 
for predictions of Mendelian sampling or by 
computing inverse of the relationship matrix 
among both dominance and subclass effects. 
Let W be the incidence matrix relating d to f 
and let 6 equal d minus Wf. A recurrence 
equation analogous to Equation [ll] is 

[:I-[: 3 [:I.[ :] [151 

The dominance relationship matrix including 
subclass effects is D* with 

Var [:I =D*oZd; 

The inverse can then be computed rapidly using 

Matrix D+l is similar to I?' except that c~ef f i -  
cients contributed by subclasses are multiplied 
by 4 and additional coefficients of 4/3 on di- 
agonals and 4 ' 3  on offdiagonals link domi- 
nance effects to the appropriate subclass effect. 

Inbred Populations 

In all livestock populations, inbreeding ex- 
ists at low to moderate levels (20). Algorithms 
for computing inverses of relationship matrices 
in noninbred populations can give incorrect 
results if applied to populations with some 
inbreeding. Inverses of relationship matrices for 
additive (14) and dominance genetic effects can 
genedy be written as: 

Inverse = (I - F")R-5R -5(1 - P) [16] 

where R is a diagonal matrix of variances of 
Mendelian segregation residuals, and nonzero 
elements of P are partial regression coefficients 
in recurrence equations, such as [4], [ll], and 
[15] relating genetic effects to their parents. 
When formed using rules for noninbred popula- 
tions, inverses for inbred populations are at 
least positive definite because R-5(I - Q) is 
nonsingular. 

In the presence of dominance variation, 
mean performance often decreases with in- 
breeding. The change in mean is linear in the 
inbreeding coefficient if there is no epistasis of 
higher order than additive by additive variation 
(12). Genetic covariances among relatives in in- 
bred populations include components due to 
additive (4) and dominance (4) variances in 
an infinite randomly mating reference popula- 
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tion, a covariance between breeding values and 
dominance effects of inbred animals, and three 
additional quadratic components in the absence 
of epistasis (2, 4). Thus, inverses of additive 
genetic and dominance relationship matrices 
can no longer be formed separately. 

The dominance relationships among inbred 
individual i with parents S and D and individ- 
ual j with parents K and L, djj, and of i with 
itself, di, must be computed from probabilities 
of gene identity by descent (5, 12). Let I 
denote identity by descent, is and iD represent 
alleles in i inherited from parents S and D, re 
spectively, and jK and j, be defied similarly. 
Then, the covariance between i and j due to 
dominance variance in an infinite randomly 
mating reference population is di,d where 
[e.g., (5, 12)l 

Algorithms that fully account for effects of 
inbreeding on genetic covariances in popula- 
tions with additive and dominance variation 
add considerable complexity and computing ex- 
penses (16, 17). Further, inbreeding levels in 
livestock populations are often lower than un- 
der random mating (20); therefore, data may 
not permit estimation of the additional compo- 
nents of comiance due to inbreeding with 
sufficient accuracy. 

When additive genetic and dominance rela- 
tionship inverses are formed using algorithms 
for noninbred populations, relationship coeffi- 
cients for inbred individuals and their close 
relatives may be computed incorrectly, and ad- 
ditional covariance components due to inbreed- 
ing are ignored. When [16] represents the in- 
verse of the additive genetic relationship 
matrix, diagonals of R are equal to 1 - .25(1 + 
Fs) - .25(1 + FD) (15) where Fs and FD are 
inbreeding coefficients of sire and dam, respec- 
tively. When inbreeding is ignored by assuming 
that a l l  Fs and PD are 0, too much variance is 
attributed to offspring of inbred parents. If all 
inbred individuals in a population do not have 
offspring, the algorithm for noninbred popula- 
tions produces the c o w  additive inverse. 

The algorithm for computing the inverse of 
the relationship matrix among sire x dam sub- 
class effects, P1, for noninbred populations 
does not assign the correct variance to inbred 
animals. Diagonals of D should equal 1 minus 
the animal's inb-g coefficient (3, but 
values of 1 or greater are assigned to inbred 
animals by the algorithm presented. When sire 
and dam are inbred by any amount but the 
resulting progeny are noninbred, dominance 
covariance among progeny in the same subclass 
(variance of sire x dam subclass effect) equals 
(1 + Fs) (1 + FD) c$ (1 1) and dominance covar- 
iance among progeny in different subclasses 
(covariance among sire x dam subclass effects) 
equals (asKaDL + asLaDd c$ for subclass ef- 
fects f s p  and fw These covariances are as- 
signed correctly by the algorithm presented but 
dominance variance assigned to progeny is too 
large because Mendelian sampling variance is 
less than the .754  assumed. Modifications of 
the algorithm to account for the effects of 
inbreeding may be very difficult. 

RESULTS 

Small Example 

To illustrate the algorithm, F-' was com- 
puted from 16 animals with sires and dams as 
listed in Table 1. Table 2 contajns the list of 
sire x dam subclasses. List of filled subclasses 
was created in pass 1 by processing the list of 
animals and their parents in Table 1 in reverse 
order so that subclasses of younger sires and 
dams p e d e  those of older sires and dams. 
Passes 2 and 3 through this list identified all 
ancestor subclasses. Parent subclasses of the 

-1, respectively, fmm each progeny subclass 
fsp. For example, subclass fm received 1 

fNp. Known status was determined by proceed- 
ing through the subclass list in Table 2 in 
reverse order for the ancestor (not filled) sub- 
classes (fkom f E 3  to fNd.  Those with a count 
of 1 and no parent subclasses known were 
treated as unknown. 

types fs,sD and fss,sr, received COUnts Of 1 and 

from each Of fI/G, f m ,  and fNA, and -1 from 
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As an example, contribution of subclass effect fNP (number 1) to the inverse given above using 
[14] is 

No. = 1 4 7 8 

, 
1.778 -.5 .25 .25 ,125 

-.5 .25 .25 -.125 
clclrll = 

L .25 -.125 -.125 .0625 J 
where c; = [l b;] and b; = [S .5 -.25], computed using Equation [7] and F1, the relationship 
matrix among known parent subclasses 4, 7, and 8 

No. = 4 7 8 r 1. .= .5 1 
= 1.778 

1 - b;F,b, F1 = 1 .25 1. 
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Elements in F can be verified using Equation 
[3]. For further verification, the dominance re- 
lationship matrix among a l l  animals in Table 1 
with sire and dam known can be obtained as D 
= (.25)WFW' + I(.75). 

Actual Population 

A FORTRAN program was developed to 
implement the algorithm for large populations. 
It computes the coefficients of the inverse rela- 
tionship matrix among either sire x dam or sire 
x maternal grandsire subclasses. The program 
was applied to a data set including 765,868 
daughters and granddaughters of 1003 popular 
Holstein bulls (18). Using the sire x maternal 
grandsire option, there were 100,917 filled sub- 
classes, and 35,910 ancestor subclasses were 
added to provide relationship ties. A total of 
5,027,884 nonzero coefficients (required to 
form P) were computed. This is about equal 
to the number of nonzero coefficients needed to 
form the inverse of the additive genetic rela- 
tionship matrix for this population. Total com- 
puting time was 163 CPU seconds on an IBM 

TABLE 1. List of animals and parents (noninbred pedi- 
gree).' 

Animal Sire DfUD 

A . . .  . . .  
B . . .  . . .  
C . . .  . . .  
E . . .  . . .  
P A B 
G A . . .  
H C E 
I . . .  P 
J H P 
M H G 
N H . . .  
0 H I 
P N F 

H G 
H I 

Q 
R 
T N F 

'Iadividuah are identified by letters. 

3090, and memory requirements were less than 
4 h4bytes. Computing times for two subsets 
with lo00 and 100,OOO animals were 3 and 26 
CPU seconds, respectively, which indicates that 

TABLE 2. List of filled sire x dam subclasses and ancestor subclasses. 

Consecutive 
rmmber Known 
ofknown Parent 

S D  SS DS SD DD added2 ~ b & & s  status3 subclasses snbclasses 

N P  
H I  
H G  
H F  
C E  
A B  
N A  
N B  
C I  
E 1  
H A  
C G  
E G  
H B  
C P  
E P  

A C  

A E  

H . . .  A B 1 
C E . . .  P 1 
C E A . . .  1 
C E A B  1 
. . . . . . . . . . . .  1 
. . . . . . . . . . . .  1 
H . . . . . . . . .  2 
H . . . . . . . . .  2 
. . . . . . . . .  F 2 
. . . . . . . . .  P 2 
c E . . . . . .  2 
. . . . . .  A . . .  2 
. . . . . .  A . . .  2 
c E . . . . . .  2 
. . . . . .  A B 2 
. . . . . .  A B 2 

. . . . . . . . . . . .  3 

. . . . . . . . . . . .  3 

K 1 4. 7, 8 
K 2 4 
K 3 a 

1 + 1 = 2  K 4 a 
K 5 
K 6 

1 K 7 8 
1 Tu 
1 Tu 
1 Tu 
1 + 1 + 1 - 1 = 2  K 8 
1 Tu 
1 Tu 
1 + 1 - 1 = 1  Tu 
1 + 1 - 1 = 1  Tu 
1 + 1 - 1 = 1  Tu 
1 + 1 + 1 - 1 - 1 =  
1 Tu 
1 + 1 + 1 - 1 - 1 =  
1 Tu 

C B  . . . . . . . . . . . .  3 1 + 1 - 1 = 1  Tu 
E B  . . . . . . . . . . . .  3 1 + 1 - 1 = 1  Tu 

'S = Sire, D = dam, SS = sire of sire, DS = dam of Sire, SD = sire of dam. DD = dam of dam. 
2Pass 1 corresponds to list of med sire x dam subclasses. 
3K = Imowa. Tu = treated unlmown. 
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processing time increases approximately line- 
arly with amount of data. 

inbred Example 

Hence, the algorithm for noninbred populations 
attributes too much dominance variance to off- 
spring of inbred but unrelated parents and also 
to offspring of related parents. 

For the inbred pedigme shown in Table 3, CONCLUSIONS 
the relationship matrix among filled sire x dam 
subclasses obtained by computing F1 with the 
algorithm presented and inverting it is 

e , D =  fA,B fC,E fA,P k , G  fI ,J  %,M 
1 0  .5 0 0 0 

0 1  0 .5 0 0 

[ / i !.56 56 'S6] 1.56 

Dominance covariance among progeny of I and 
J is Var(f1,) which equals 1.56 4 or .39 4. 
Dominance covariance of a progeny of I and J 
with a progeny of H and M is covariance of f v  
with fI./M, which equals .564 or .I&& ~0th 

covariances are correct because offspring were 
out of inbred but unrelated parents. Dominance 
variance assigned to an offspring of I and J or 

Dominance variance of an offspring of A and F 
or C and G is r(1.0 ( 2 5 )  + (.75)3$ = 1.e. 
The correct coefficients of dominance variance 
are 1.0 and 1.0 - .5am = .75, respectively. 

H and M is [(1.56) (25) + (.75)]O2, = 1.1dd. 

TABLE 3. List of animals and parents (inbred p e ! d i p  
Wirh parent-o.fhpring raalings).' 

Animal Sire Dam 
A . . *  . . .  
B . . .  . . .  
C . . .  . . .  
E . . .  . . .  
F A B 
G C E 
H A F 
I A F 
I C G 
M C G 
N I J 

Dominance effects are composed of sire x 
dam subclass effects that follow simple rules of 
inheritance plus independent residuals within 
subclass that are not inherited. Inverses of rela- 
tionship matrices among sire x dam subclass 
effects can be computed rapidly with cost 
proportional to number subclasses. Each sub- 
class contributes coefficients of a matrix no 
larger than 9 x 9 @extabhg to interactions of 
sire and its parents with dam and its parents) to 
a larger matrix. Dimensions of inverses created 
could be several times the number of filled sire 
x dam subclasses, because ancestor subclasses 
that provi& ties must be added to the list of 
subclasses analogously to including sires and 
dams of more than one progeny in the list of 
animals when forming the additive relationship 
inverse (9). 

Current knowledge about the magnitude of 
dominance variation in yield and nonyield (e.g., 
fertility, health, swvival, type) traits is ex- 
tremely limited. Dominance variance can be 
estimated as e = by using the rules for 
computing F-I and REML or an approxima- 
tion. If additive by additive variation exists, 
estimates of 4 would be biased upward. The 
techniques presented should allow dominance 
effects for noninbred populations to be included 
inexpensively in genetic evaluation models. 
Mixed model equations using such inverses 
predict which sires combine best with which 
dams, and predictions of individual dominance 
effects also can be obtained easily. 

With low levels of inbreeding, inclusion of a 
linear regression on individual inbreeding coef- 
ficients in the model for data analysis while 
ignoring inbreeding in forming inverses of rela- 
tionship matrices may be sufficient. This 
should allow an assessment of the variability of 
specific combiniag abilities beyond the average 
effects of inbreeding. 
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APPENDIX 

Slre-Maternal Grandsire Subclass Effects 

related to others only through sire and MGS. Then 
For the subclass of common sire and maternal grandsire (MGS), assume that animals are 

where S W) denotes sire of iu), and MGSWGK) denotes maternal grandsire of iu); 

where SMGS is sire of MGS, MMGS is maternal grandsire of MGS, and MGSS is maternal 
grandsire of S. 
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Rules for computing F* are identical to those previously discussed except that sire X dam 
subclass is replaced by sire x MGS subclass, D by MGS, DS by MGSS, SD by SMGS, and DD by 
MMGS (see Figure Al). 

0 

ss /- + MGSS 

I 

Figure Al.  F'arent su- of sire x maternal grandsire subclass i. 

Contribution of fs,MGS to ~ - 1  is obtained using Equation [14] with 

Relationship matrix of the eight parent subclass effects, Var(fppy)/c$, is 

j 
k 
1 

m 
n 
0 

P 
9 

S, S ,  ss, MGSS, SS, ss, MGSS, MGSS, 
SMGS MMGS MGS MGS SMGS MMGS SMGS MMGS 
j k 1 m n 0 P Q 
1 0 .25 .125 .5 0 .25 0 
0 1 .125 .0625 0 .5 0 .25 
.25 .125 1 0 .5 .25 0 0 
,125 .M25 0 1 0 0 .5 .25 
.5 0 .5 0 1 0 0 0 
0 .5 .25 0 0 1 0 0 
.25 0 0 .5 0 0 1 0 

1 - 

- 0 .25 0 .25 0 0 0 1 
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The vector of relatiunships between sire x MGS subclass i and its parent subclasses, 
fiv(fsw,fpp)/4. is 

S, S, SS, MGSS, SS, ss, MGSS, MGSS, 
SMGS MMGS MGS MGS SMGS MMGS SMGS MMGS 

j k 1 m n 0 P 9 
S,MGS [ .5 .25 .5 .25 .25 .125 .125 .0625 ] 

Coefficients contributed to F' by sire x MGS subclass i am then computed using [14]. 
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