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ABSTRACT 

Inverses of relationship matrices are 
useful for prediction of individual addi- 
tive or nonadditive genetic merits and for 
estimation of variance components. An 
algorithm to form inverses of additive by 
additive relationship matrices rapidly 
from lists of individuals and their parents 
was developed. The algorithm uses sim- 
ple recurrences among additive by addi- 
tive and siredam combination effects to 
const~~ct inverses for noninbred or inbred 
populations. Dimensions of matrices 
produced may be several times the num- 
ber of individuals in the population be- 
cause combination effects for sire-dam 
subclasses must be included in matrices. 
Rules of inheritance of siredam combi- 
nation effects are the same as for domi- 
nance combination effects. Cost of form- 
ing inverses increases linearly with 
number of individuals. Each individual 
contributes 36 or fewer nonzero coeffi- 
cients, and each siredam subclass con- 
tributes an additional 81 or fewer nonzero 
coefficients to the matrix. Computation of 
inverse of the relationship matrix due to 
1003 sires and maternal grandsires of 
765,868 cows required forming a matrix 
of order 137,830 and 4 Mbytes of memo- 
ry. 
(Key words: additive by additive rela- 
tionships, recurrence relationships, matrix 
inversion) 
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Abbreviation key: A x A = additive by addi- 
tive. 

INTRODUCTION 

Genetic variation is often partitioned into 
additive and nonadditive components. Nonaddi- 
tive genetic variation results from interactions 
of genes. Interactions of genes at the same 
locus result in dominance variance and interac- 
tions of two genes at different loci result in 
additive by additive (A x A) variation. Interac- 
tions of more than two genes may also contrib- 
ute nonadditive variance through terms such as 
additive by dominance, dominance by domi- 
nance, and additive by additive by additive 
variation. 

Covariances between individuals due to any 
of these sources of genetic variation are well 
defined in randomly mating, noninbred popula- 
tions if each source of variation consists of 
small contributions from many unlinked loci 
(3). More complex inheritance such as major 
genes and linkage also affect covariance among 
relatives but are beyond the scope of this paper 
and are not addressed further. 

Genetic effects of individual members of a 
population can be predicted by use of mixed 
model equations (4,8). These equations require 
inverses of relationship matrices among all ad- 
ditive and nonadditive effects in the model and 
knowledge of variance ratios. Unknown vari- 
ances may be estimated by techniques such as 
REML (12). which also require inverses of 
relationship matrices. 

Henderson (5, 6) presented rules for rapidly 
computing inverses of additive relationship ma- 
trices for noninbred populations. Hoeschele and 
VanRaden (9) present rules for rapidly comput- 
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ing inverses of dominance relationship matrices 
for noninbred populations. Chang et aL (2) 
presented methods to reduce times required to 
invert A x A relationship matrices. This paper 
presents an algorithm c o r n b e g  procedures of 
Hoeschele and VanRaden (9) and Chang et al. 
(2) that allows inverses of A x A relationship 
matrices to be computed rapidly for large popu- 
lations. 

MATERIALS AND METHODS 

Recurrence Relatlonshlps for 
Nonlnbred Populatlons 

Transmission of a sample half of genes from 
parents to offspring in each generation allows 
genetic effects to be described by simple recur- 
rence relationships. These recurrence relation- 
ships allow rapid construction of relationship 
matrices and their inverses (7, 9). Inverses of 
additive and dominance relationship matrices 
can be f m e d  rapidly from lists of animals and 
their parents (5, 7) and lists of sire x dam 
subclasses (9), respectively. 

The A x A relationship matrix for any popu- 
lation can be formed rapidly by first forming 
the additive relationship matrix using a simple 
recursive procedure (7) and then squaring each 
element (3, 8, 10). Standard matrix inversion 
techniques could then be used to obtain the A x 
A inverse, but this approach could be extremely 
expensive for a large population. A more a p  
pealing strategy is to form the A x A inverse 
directly by using a simple recurrence relation- 
ship among A x A effects. 

Let a be an animal’s A x A effect. Then a 
can be described in terms of the animal‘s sire A 
x A effect (s), dam A x A effect (d), a combi- 
nation effect of the sire and dam (s,d), and a 
Mendelian sampling effect (m): 

a = .25(s) + .25(d) + (s,d) + m. [l] 

In the absence of inbreeding, the four terms on 
the right are mutually uncorrelated. Proof is 
that s represents interlocus interactions among 
the sire’s genes, d represents interlocus interac- 
tions among the dam’s genes, and (s,d) 
represents interactions of genes in the sire with 
genes at other loci in the dam. No covariance 
exists among these three terms unless the sire 
and dam share common genes. 

Further, m represents the deviation of a from 
its full-sib family mean (f) defined as f = .25(s) 

+ .25(d) + (s,d). Therefore, E(alf) = f, and f and 
m are uncorrelated. The advantage of recur- 
rence [l] over that used by Chang et al. (2) is 
that siredam combination effects, which have 
fairly simple inheritance (9), are now separated 
from Mendelian sampling effects, which are 
uncomelated. 

Full sibs have an additive relationship of .5 
and an A x A relationship of (.5)2 = .25. Let 
c& represent variance of A x A effects. Then 

Var(a) = 

v4f) = 
Var(s,d) = 

Var(m) = 

The covariance matrix for a and components of 
f is 

VCU 

1 

.25 

.25 

.125 

.25 .25 

1 0  

0 1  

0 0  

0 
.125 

In Equation [l], an individual’s A x A effect is 
expressed in terms of its sire and dam A x A 
effects and a combination effect of sire and 
dam. A similar recurrence equation to express 
combinatian effects in terms of ancestor combi- 
nation effects is needed. Let ss and ds refer to 
sire and dam of the sire; le$ sd and dd Iefk 
to sire and dam of the dam. Then 

.5(s,sd) + .5(s,dd) + el 

.5(ss,d) + .5(ds,d) + Q 
(s,d) = 

These expressions both state that the combina- 
tion effect of sire and dam equals the average 
of the combinations of one with the parents of 
the other plus Mendelian sampling terms. Com- 
binations (s,sd) and (ds,d) are of animals of the 
same sex, and such combinations may not be 
possible in mammals (11). Nevertheless, in- 
cluding same-sex combination effects in the 
matrix is the easiest way to tie together more 
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distantly related combinations of opposite sex 
that may OCCUT. 

The el and do not have smallest variance 
passible. An e with smallest possible variance 
is obtained by combining the two (s,d) expres- 
sions as shown by Hoeschele and VanRaden 
(9): 

(s,d) = .5[(s,sd) + (s,dd) + (ss,d) 
+ (ds,d)] - .25[(SS,Sd) + ( s s , ~ )  
+ (ds,sd) + (ds,dd)l + e [2] 

This recurrence equation for A x A combi- 
nation effects is identical to that for dominance 
combination effects (9). Sire x dam subclass 
effects for dominance and A x A combination 
effects are both interactions of genes in the sire 
with genes in the dam and are inherited in the 
same way. For example, correlation of combi- 
nation effects (s,d) and (s,o), where o is an 
offspring of d from a sire unrelated to s or d, is 
.5 whether (s,d) and (s.0) represent dominance 
or A x A combination effects. This is because d 
and o are expected to share half the same genes 
whether one is measuring within-locus or be- 
tween-locus interactions of those genes with s. 

Cornputatlon of Addltlve by Additive 
Inverse for Nonlnbred Populatlons 

Inverses of relationship matrices among A x 
A effects can be constructed by combining 
algebra of Quaas (13) with recurrence equations 
[l] and [2]. Each A x A effect and each sire- 
dam combination effect is described in terms of 
ancestor effects. Some animals and subclasses 
must have unknown ancestors because 
pedigrees must end eventually. Let u contain 
known A x A effects (ua) and known sire-dam 
combination effects (uc) and let ub contain 
effects of unknown ancestors and ancestor com- 
binations. 
Then 

where ma and 4 are vecton of Mendelian 
sampling effects associated with A x A and 
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combination effects, respectively, and matrices 
S, W, Q, &,, Wb and Qb link elements of u to 
ancestor effects. 
Nonzero coefficients of S and Sb are values 

ents in u, and unknown parents in ub Nonzero 
coeffkknts of Q and Qb are values of .5 and 
-.25 linking siredam combinations to known 
or unknown ancestor combination effects in u 
and Ub as in Equation 121. Nonzero coefficients 

als in u, to siredam combinations in uc as 
described by Hoeschele and VanRaden (9). 
Siredam combinations containing only one ob- 
servation that are related to no other combina- 
tions may be declared unknown and included in 
ub rather than u. 

Of .25 linking individuals in Ua to known par- 

Of w and Wb are Vdua Of 1 linking individu- 

Redefmition of [3] gives 

where 

[41 

Algebraic rearrangement of [4] gives 

Var (m) is a diagonal matrix because Men- 
delian sampling effects are uncorrelated. Di- 
agonals are .75 t&, corresponding to elements 
of ma or .03125 t&, for elements of m,. If the 
conditions stated by Hoeschele and VanRaden 
(9) for determining unknown status of ancestor 
combinations fOuOWed, Pb var(UdPk iS 

diagonal even though Var(ud is not. Diagonals 
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of Pb var(Ub)Pi are sums of variance contritm- 
tions from unknown ancestors and unknown 
ancestor combinations with an adjustment for 
the fact that ancestor Combinations may be 
correlated. 
Usually E(ub) will be assumed null. If dis- 

tinctly different base populations such as differ- 
ent breeds exist or if selection on A x A effects 
has caused differences in base members across 
time, procedures analogous to those in (13, 15) 
might be developed to account for these differ- 
ences. 

Let R represent the diagonal matrix 
[pbVar(ub)PL + Var(m)] (1/&), and let U rep 
resent var(u) (I/.",>. 
Then 

A convenient algorithm for rapid construction 
of inverses of relationship matrices among A x 
A effects is provided by Equation [6]. 

Dimensions of U and U-' can be several 
times the number of individuals in the popula- 
tion because ancestor combination effects are 
included. This i n c r d  size of U and U-] is 
more than offset by the resulting sparseness and 
short time necessary to form U-l, particularly 
for large populations. Cost of computing U-1 
increases only linearly with number of in- 
dividuals vs. cubic or possibly quadratic in- 
creases with algorithms involving matrix or 
sparse matrix inversion techniques. 

Algorlthm for Computlng the Addltlve by 
Addltlve Inverse for Nonlnbred Populatlons 

The following procedure for obtaining the A 
x A inverse is recommended. 

1. Begin with a list of individuals and their 
parents. Parents not in the list of individuals 
and with only one progeny may be treated as 
unknown. Parents with more than one progeny 
should be added to the list of individuals and 
assigned paremt values of unknown. Step 1 is 
identical to that for the additive inverse. 
2. Create a list of filled sire-dam subclasses. 

Add to this list any ancestor subclasses that 
provide relationship ties. Filled subclasses that 
contain only one observation and are tied to no 

relative subclasses may be treated as unknown. 
Steps 1 and 2 are the same as for the domi- 
nance inverse (9). 

3. For each individual in the expanded list 
created in step 1, write to disk or tape certain 
coefficients pertaining to the individual and its 
sire, dam, and siredam subclass effect. Number 
of coefficients written wil l  vary from 1 to 16, 
and coefficients will differ depending on un- 
known status of sire, dam, and subclass. Four 
situations may be encountered: 

If all sources are known, add 

(s,d) L-16 4 4 16 1 
If sire and dam are known but subclass effect is 
treated as unknown, add 

a s d  

d [ 41 (1/14) 
If one parent is known and subclass effect is 
unknown, add 

a parent 

If al l  sources are unknown, add 1 to the in- 
dividual's diagonal. 

4. For each sire-dam subclass in the ex- 
panded list of subclasses created in step (2), 
write to disk or tape certain coefficients per- 
taining to that sire-dam subclass and its ances- 
tor subclasses. Number of coefficients will vary 
from 1 to 81, and coefficients will differ de- 
pending on which ancestor subclasses are un- 
known Coefficients are the same as for the 
dominance inverse (9) except multiplied by 
eight, 

5. Sort coefficients by row and by column 
within row, and sum coefficients with identical 
row and column to obtain U-l. 
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Var I j I=I (1 + F 2  (1.5 + SFd2 (1 + F Y  I c',. 

For some populations, U-' may be fonned 
from a list of sires and maternal grandsires 
instead of sires and dams. Required changes in 
the algorithm are in the Appendix. 

Computation of Additive by Additive 
inverse for Inbred Populations 

In a pedigree contains inbreeding, contribu- 
tions of sire (s), darn (d), and sire-dam subclass 
(s,d) in recurrence [l] are correlated. With the 
most extreme inbreeding, selfing, sire equals 
dam and these two effects are perfectly corre 
lated. With less extreme inbreeding such as 
fkom mating paternal halfsibs, a parent interac- 

tion of subclass (s,d) is the interaction of sire of 
sire (= sire of dam) with himself (ss,ss). Be- 
cause all i n M g  results from an ancestor 
appearing on both sides of an animal's pedi- 
gree, the list of all ancestor interactions for an 
inbred animal always includes interaction of the 
common ancestor with itself. 

To establish the relationship between an in- 
dividual's interaction with itself and its A x A 
effect, suppose an individual with A x A effect 
i is selfed to produce two offspring with A x A 
effects j and k. With Fi denoting inbreeding 
coefficient of i, 

+ Fd2 (1 + FZ 1 
-I 

Elements of this matrix are of course squares of 
the additive relationship elements. Variance of 
the A x A effect common to j and k (f) equals 
covariance of j and k or 

Let mj be Mendelian sampling in j such that j = 
f + mj. Because m, is independent of i, 

cov(i,o = C O V ( ~ )  = (1 + ~ 9 2 2 ~ .  

Correlation of i and f is given by 

Because i and f are perfectly correlated, have 
equal variances, and also have equal expecta- 
tions, i = f. From EQuation [l], f = .25(i) + 
.25(i) + (ij). Substitution of i for f gives (i,i) = 
.5(i). Consequently, an individual's interaction 
with itself equals half its A x A effect. 

The recurrence equation for an animal's in- 
teraction with itself (a,a) can be obtained by 
replacing Sa, .5s, and .5d with (qa), (s,s), and 
(d,d), respectively, in Equation [l]: 

(a,a) = .25(s,s) + .25(d,d) 
+ .5(s,d) + .5m m 

+ Fd2 (1.5 + .5Fd2 ] 

From the inheritance of combination effects (9), 

(a,a) = .5(qs) + .5(a,d) + el [SI 
= (a,s) + (a,d) - S(a,s) - S(a,d) 

+ el, 
(qs) = .5(s,s) + .5(s,d) + q [91 
(qd) = .5(s,d) + .5(d,d) + e3 1101 

Substituting [9] and [lo] for the terms sub- 
tracted off in Equation [SI produces another 
recurrence equation for (a,a) that has smallest 
possible residual variance: 

Interestingly, Equation [ll] can also be ob- 
tained by applying the general recurrence [2] to 
interaction effect (a,a). 

For situations in which some parent effects 
in 121 and [ll] may be unJmown, recurrence 
equations for combination effects of the form 
(ha) and (s,d) can generally be written (9) as 

W I  (s,d) = b'c + e 

where c is a vector of known parent interac- 
tions and b is a vector of partial regression 
coefficients with 
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b = Cov[(s,d), known parent interactions] 
war (known parent interactions)]-l 

~ 3 1  
and 

Var(e) = Var(s,d) - b’war@nown parent 
interactions)] b. 1141 

Computing the covariance matrix of known 
parent interaction effects requirm a general ex- 
pression for covariances among interactions. 
Sire-dam interactions are A x A effects of 
animals minus direct contributions of sire and 
dam and minus Mendelian sampling., or (s,d) = 
a - .25 (s + d)-m, where a and m belong to a 
randomly chosen progeny of s and d. Let a’ be 
the A x A effect of another randomly chosen 
member of a different full-sib family with sire 
s‘ and dam d’. Then 

Cov[(s,d),(s’,d’)] = Cov[(a - 2 5 s  - .25d - m), 
(a’ - 2%’ - .25d’ - m’)]. 

Because m is uncorrelated with a’, s’, d’ and m’ 
and m’ is uncorrelated with hs,d and m 

Cov[(s,d),(s‘,d’)] = Cov[(a - .25s - .25d), 
(a’ - 2 5 s ’  - .25d’)]. 

Terms on the right side of the last equation 
are each functions of additive relationships 
among animals and parents. Let Ai, denote 
additive relationship of individuals with A x A 
effects i and j, respectively. Relationships in- 
volving animals can be expressed in terms of 
Ai, coefficients of parents, e.g., A,) = .5(Ast + 
A&) and A,. = .25(&,~ + A& + + Add‘). 
Writing covariance of (s,d) with (s’,d’) in terms 
of Aij coefficients of parents and further algebra 
yields 

Cov[(s,d),(s‘,d’)] = .125 (&& + &bst). 

Covariance of subclasses (s,d) and (s‘,d’) sim- 
plifies to variance of (s,d) when s = s‘ and d = 
d‘, yielding 

Var(s,d) = .125(&& + A:). 

These results allow computing Var&nown par- 
ent interactions) and evaluating [12] for any 

interaction (s,d) or (&a). Proof of recurrence 
[ll] can be obtained by applying Equation 1121 
to (a,a) with parent combinations (a&, (hd), 
(s,s), (4d). and (s,d) born 

Algorlthm for Inbred Populations 

An algorithm for computing A x A inverses 
for inbred populations includes all of the same 
steps as the algorithm for noninbred popula- 
tions. Interactions of animals with themselves 
must be excluded from the list of interactions 
created in step 2. Inclusion of an animal’s A x 
A effect and its interaction with itself would 
result in a singular matrix because a = 2(a,a). 
Interactions of an animal with its sire and dam 
must be included if these provide ties between 
more than 1 descendant interaction. 

Coefficients written in steps 3 and 4 are 
computed according to Equation [6]. Diagonal 
elements of R are computed using [14], and 
nonzero coefficients of P are regression coeffi- 
cients computed using [13]. Known parent in- 
teractions may include some subclasses of type 
(ha). Because the vector u includes effects 
2(a,a) = a rather than (&a), covariances and 
variances of (%a) ancestors must be multiplied 
by 2 and 4, respectively, when using Equation 
[W. 

Individuals with inbred offspring may con- 
tribute a maximum of 36 rather than 16 coeffi- 
cients because the list of known ancestor ef- 
fects for such individuals may now include 
interactions of the animal with its sire and dam. 
Maximum coefficients contributed by any (s,d) 
subclass is st i l l  81. 

RESULTS 

Small Example 

dividuals identified by letters: 
Consider the following pedigree with in- 

Because e is inbred, the algorithm for inbred 
populations is used to form W. The vector of 
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A x A and combination effects is u' = each and, hence, were not included in u. Con- 
@w,d,e,(b,d). @.c)]. Effects b, c, and (b,c) have tributions to U-' for each effect in u were 
no known ancestors. Ancestor interactions computed from Equation [q using [13] and 
(c,d), @,e), and (de) have only one descendant [14]. In order, contributions were 

b 
for b add [1.01 Y 

for c add [1.01 9 

C 

for d add 

for e add 

for (b,d) add 

b 

.125 
-. 125 

.5 
-1 

b 
.0625 
.0625 

.25 

b 

1 
-4 
2 

-.25 

L 

(b&) 
and for (b,c) add [8.0] 

C 

-. 125 

-.5 
1 

d 

.125 

.0625 

.0625 

.25 
-.25 

(b,d) 
-4 
16 
-8 

Summation of contributions from all six effects gives 

b C d e 

U-' = 2.1875 ,125 S625 

2.0625 
1.125 -.5 

symmetric 

b C d 

[ 
Inversion of U-1 gives 

0 .25 
1 .25 

1 

L symmetric 

-.25 
0 
-25 
1 

d 

.5 
-.5 
2 
4 

e 

-.25 
-.25 
1 

-1 

(b,c) 
2 

-8 
4 

e 

S625 
.0625 
S625 

1.5625 

@,d) 
.25. 
.25 

-1 
1 

I .  
@,dl 
-4.75 
1 

-3.75 
-1 
25 

(bd) 
.25 

0 
.25 
.28125 
.15625 

, 

@&I 
2 
0 
0 
0 

-8 
12 

( b d  
0 
0 

.09375 

-125 
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The upper left 4 x 4 submatrix is the A x A rela- 
tionship matrix and the remaining elements are 
covariances for sir- interactions. 

Actual Population 

A FORTRAN program was developed to 
implement the algorithm for large populations. 
This program computes coefficients of the in- 
verse of the A x A relationship matrix either 
due to sires and dams or due to sires and 
maternal grandsires. The program was applied 
to a population of 765,868 Holstein cows. 
Number of sires plus maternal grandsires was 
only 1003 because of edits used for variance 
component estimation (14). Using the sire-ma- 
ternal grandsire option and the algorithm for 
noninbred populations, order of the matrix con- 
structed was 137,830. Number of nonzero coef- 
ficients required to form the inverse was 
5,042,444. Among rows and columns of the 
inverse created, 136,827 pertained to sire-ma- 
ternal grandsire combination effects. Total 
computing time was 165 CPU seconds on an 
IBM 3090, and memory requirements were 4 

Due to use of sire-matemal grandsire option, 
ratio of order of the A x A inverse to order of 
the additive inverse (1003) was approximately 
100 to 1. With the s i r e  option, this ratio 
would reduce to approximately 4 or 5 to 1. 

M b P S .  

CONCLUSIONS 

In noninbred populations, A x A effects are 
composed of independent contributions of sire, 
dam, siredam combination, and Mendelian 
sampling. Inheritance of A x A sire-dam com- 
bination effects is identical to inheritance of 
sire x dam subclass effects for dominance (9). 
Inverses of A x A relationship matrices for 
noninbred populations can be formed rapidly 
from lists of animals and their parents and lists 
of filled subclasses and parent subclasses. 
An animal's A x A effect is twice the inter- 

action (subclass) effect of the animal with it- 
self. This identity allows correlations among 
sire, dam, and siredam subclass contributions 
to an animal's A x A effect to be accounted for 
in inbred populations. Inverses of A x A rela- 
tionship matrices for inbred populations can be 
formed rapidly from lists of subclasses includ- 
ing interactions of animals with themselves and 
their parents. 

Procedures to form inverses of A x A rela- 
tionship matrices include many of the same 
steps used for dominance inverses (9). Inclu- 
sion of both inverses in mixed model equations 
should allow separation of dominance and A x 
A variation if both exist. 

Inverses produced are very sparse but can 
have dimensions several times the number of 
animals because of addition of ancestor sire- 
dam subclass effects. Mixed model equations 
incorporating these inverses predict which sires 
combine best with which dams in addition to 
predictions of individual A x A effects. Time 
required to construct inverses is approximately 
proportiOnal to number of animals. Results can 
be verified by comparing the inverse of the A x 
A inverse to the A x A relationship matrix. 
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APPENDIX 

Relationships due to common sires and ma- 
ternal grandsires rather than sires and dams 
may sometimes be sufficient for studying 
nonadditive variation in dairy populations (1). 
Let a be an animal’s A x A effect; s, its sire A 
x A effect; mgs, it matemal grandsire A x A 
effect; and (s,mgs), the combination effect of 
sire and matemal grandsire. 

Recurrence Relationships for 
Nonlnbred Populations 

a = .25(s) + .0625 (mgs) + (s,mgs) 
+ m  

var(a) = var(s) = var(mgs) = .”, 

Var(f) = (.3125)2& 

f = .U(s) + .0625(mgs) + (s,mgs) 

Var(s,mgs) = .03125& 
Var(m) = [l - (.3125p]$, = 

(23 1/256)& [All 

Further, 

(s,mgs) = .5[(s,smgs) + .5(s,mmgs) 
+ (ss,mgs) + S(mgss,mgs)] 
- .25[(ss,smgs) + .5(ss,mmgs) 
+ .5(mgss, smgs) 
+ .25(mgss,mmgs)] + e [A21 

where smgs is sire of mgs, mmgs is maternal 
grandsire of mgs, and mgss is matemal grand- 
sire of s. In [3] through [6], nonzero coeffi- 
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cients of S and s b  are now .25 pertaining to sire 
and .0625 pertaininS to maternal grandsire. 
Nonzero coefficients of Q and Qb are .5, .25, 
-.25, 4 2 5 ,  and -.0625 as follows from [A2]. 
Var(m) is a diagonal matrix with diagonals 
equal to (231/256) .”, corresponding to ele- 
ments of ma or (121/256) (1/32) .”, for ele- 
ments of m,. 

Algorithm for Noninbred Populations 

~n the algorithm for computing U-1, work 
with a list of individuals and their sires and 
maternal grandsires and with a list of sire- 
matemal grandsire subclasses. Contributions of 
an individual to the matrix are as follows. 
1. If all sources are known, add 

a s mgs (s,mgs) 

6 4 1 6 4 4 4  
256 -64 -16 256 

-16 4 1 -16 
256 -64 -16 256 

2. If sire and maternal grandsire are known but 
subclass effect is unknown, add 

a 

mgs 
S 

a S mgs 

16 -‘4“ ] (1f239) 
1 

3, If sire is known but maternal grandsire and 
subclass effect are unknown, add 

a s  

4. If maternal grandsire is known, but sire and 
subclass effect are unknown, add 

5. If all suurces are unknown, add 1 to the 
individual’s diagonal. 
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Recunence Relationships for 
Inbred Populations 

With sire-maternal grandsire relationships, 
inbreeding occurs only when an animal’s sire 
and mgs are related. An extreme case is when 
sire equals maternal grandsire. Then, algebra 
similrr to that used for selfing gives the identity 
(a,a) = .25(a). This identity for sirematernal 
grandsire combination effects differs from that 
for siredam combination effects because one of 
the animals involved now contributes 1/4 rather 
than 1/2 of its genes. 

Dividing [All by 4 and replacing .25(a), 
.25(s) and .25(mgs) with (&a), (s,s), and 
(mgs,mgs), respectively, yields 

(a,a) = .25(s,s) + .0625(mgs,mgs) 
+ .25(s,mgs) + .25m [A31 

Other useful recurrences are 

(a,a) = S(a,s) + .25(a,mgs) + el 
= (a,s) + .5(a,mgs) - .5(a,s) 
- .25(a,mgs) + el 1 ~ 4 1  

(a,4 = .5(s,s) + .25(s,mgs) + q [As] 
(a,mgs) = .5(s,mgs) + .25(mgs,mgs) + e3 

[A61 

Substituting [As] and [A61 for the terms sub- 
tracted off in recurrence [A41 yields a recur- 
rence with smallest possible residual variance: 

(&a) = (a,s) + .5(a,mgs) - .25(s,s) 
- .0625(mgs,mgs) 
- .25(s,mgs) + e ~ 7 1  

Coefficients contributed by each subclass to the 
inverse are calculated using Equation [6] with 
[12], [13], and [14]. Covariance matrix of 
known parent interactions of sire-maternal 
grandsire subclasses is needed in 1131 and [14]. 
This covariance matrix can be computed from 
the following general expression for covariance 
of (s,mgs) and (s‘,mgs’) subclasses, derived 
analogously to that of (s,d) and (s’,d’) 
subclasses ,  Cov[( s,mgs),( s’,mgs’)] = 
.03125(AS,S~Arngs~~ + AsJngs~Anlgs,s‘). 
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