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ABSTRACT 

Advanced reproductive techniques are 
creating the large numbers of close rela- 
tives needed to study gene interactions. 
Identical triplets, a set of 26 full sisters, a 
family of 42 15 three-quarter sisters 
(same sire and maternal grandsire), a 
family of 76,698 half sisters, and 1.6 
million granddaughters of Round Oak 
Rag Apple Elevation now have lactation 
records. Similarity of closest relatives 
might be explained by similar nonaddi- 
tive as well as additive genetic merit. 
The 23,015 families of full sisters with 
mean family size of 3 provide nearly as 
much information about dominance vari- 
ation as do the 55,779 families of three- 
quarter sisters with mean family size of 
13; the 79 families of clones provide 
little information by comparison. Hypo- 
thetically, REML analysis of all US Hol- 
stein data could provide estimates of 
dominance and additive x additive vari- 
ance with standard errors approximately 
1% of phenotypic variance, but estimates 
of any higher order interactions would 
have standard errors >lo%. The tilde-hat 
approximation proved to be incompatible 
with animal models but was used for 
sire-maternal grandsire analysis of 
765,868 first lactation records. 
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Dominance variance was estimated as 
3.5% of phenotypic variance for milk 
and 3.3% for fat with standard error of 
4.2%. With constant data set size, vari- 
ances are estimated most precisely if fa- 
mily sizes equal 1 plus ratio of within- 
family to between-family variance. An 
animal model evaluation including 
dominance relationships for 58 1,670 
animals was computed, but gene interac- 
tions from distant ancestor pairs were 
ignored. Mating advice and improved ad- 
ditive predictions, especially for clones, 
could be obtained by including 
dominance in models. 
(Key words: reproductive technology, 
gene interaction, clones, dominance vari- 
ance) 

Abbreviation key: ET = embryo transfer, 
MGS = maternal grandsire, REL = reliability, 
RIP = record in progress. 

INTRODUCTION 

Dairy cattle reproduce less by natural mat- 
ing and more by AI, embryo transfer (ET), 
embryo-splitting, and nuclear cloning each 
year. The large groups of close relatives thus 
produced share similar main effects of genes 
(additive effects) and also gene interactions 
(nonadditive effects). Investigation of gene in- 
teractions has been difficult because of low 
mean nonadditive relationships (3) and lack of 
appropriate statistical and computational 
methods. Increasing numbers of identical 
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TABLE 1.  Contributions of additive and nonadditive vari- 
ances to covariances of close relatives. 

Additive Additive 
Domi- x X 

Relative Additive nance additive dominance 

Identicals 1 .O 1 .o 1.0 1 .O 
Full sibs .5 .25 .25 ,125 
Parent- 

Three- 
progeny .5 0 .25 0 

quarter 
sibs ,3125 ,0625 ,0977 .0195 

Half sibs .25 0 .0625 0 

animals, full sibs, and three-quarter sibs and 
the potential for including nonadditive rela- 
tionships in genetic evaluations now make the 
study of gene interactions more feasible. 

Relationship coefficients for nonadditive 
genetic effects were established long before 
corresponding variances (4) could be esti- 
mated accurately. Covariances among records 
of noninbred relatives x and y can be calcu- 
lated by the well-known formula (2) 

where ax, is additive relationship of x and y, 
and d,, is dominance relationship of x and y. 
Summation for i and j is from 0 to n and 
includes only the combinations where 1 I (i + 
j) I n; n is the limit for number of genes 
involved in interactions, and genes are as- 
sumed to be unlinked. Thus, probabilities that 
x and y share single genes or pairs of genes at 
the same locus determine their relationship 
coefficients for all higher interactions. Exam- 
ples of these coefficients are in Table 1. 

Variances of gene interactions are estimated 
from covariances among various types of rela- 
tives. Recent studies have included families of 
full sisters (8, 9, 10) produced by ET or fami- 
lies of three-quarter sisters (4) produced by AI. 
Estimation methods have included REML (8, 
9), tilde-hat approximation to REML (4), and 
noniterative methods (1, IO). Estimates of 
dominance variance for milk and fat (1, 8) 
have been inconsistent, have had large stan- 
dard errors, and sometimes have been outside 
parameter limits (1). Nonadditive variance esti- 

mates were as large as additive variance (4) for 
cow fertility and from .1 to 4 times additive 
variance for linear type traits (9, 10). Accurate 
estimation of nonadditive variances is difficult 
because proportions of variance shared by rela- 
tives may be small and confounded with other 
genetic or environmental effects. 

Genetic evaluations soon could include 
gene interactions if sufficient variation is 
present and estimated accurately. Inverses of 
dominance ( 5 )  and additive x additive (11) 
relationship matrices can be constructed 
rapidly if effects representing interactions of 
animal pairs are included in matrices. Predic- 
tions of additive effects would be more ac- 
curate, and predicted interactions would affect 
mating plans (5, 11). Genetic merits of identi- 
cal animals can be solved from one equation 
per clone family instead of per animal, but 
separate permanent environment equations are 
required with repeated records (6). 

The objectives of this study were 1) to 
examine numbers and types of relatives availa- 
ble, 2) to compute and compare standard errors 
of nonadditive variance estimates from various 
data sets, 3) to estimate dominance variance 
for milk and fat yields by approximate REML, 
and 4) to examine computational feasibility of 
including dominance relationships in genetic 
evaluation with an animal model. 

MATERIALS AND METHODS 

Data files used to produce national genetic 
evaluations also contain much information 
regarding nonadditive genetic parameters. Lar- 
gest family sizes, mean sizes, and number of 
families present in US Holstein yield data 
available for January 1991 evaluations are in 
Table 2. Embryo-splitting and nuclear transfer 
have been used only recently, and only 79 such 
clone families had data. Full-sister families in 
Table 2 were produced only by ET; the largest 
included 26 full sisters in eight herds in three 
states. Matings of popular AI bulls to daugh- 
ters of other popular bulls have produced fami- 
lies of up to 4215 three-quarter sisters. The 
largest half-sister family includes more than 
75,000 daughters of Marshfield Elevation 
Tony. His sire, Round Oak Rag Apple Eleva- 
tion, produced the largest quarter-sister family 
and now has more than 1.6 million grand- 
daughters (Table 3). 
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TABLE 2. Numbers and types of close relatives in USDA yield data files as of January 1991 and numbers of ideal-sized 
families that would provide equivalent information. 

Number Mean Largest Ideal 
family family Balanced Family Technology of family 

type used' families size size size2 number3 

Identicals Es 79 2 3 3 49 
Full sisters ET 23,015 3 26 6 6914 
Thee-quarter sisters A1 55,779 13 4215 11 33,326 
Half sisters AI 291,587 40 76,698 15 15 1,268 
Quarter sisters AI . . .  . . .  843,760 63 . . .  

'ES = Embryo-splitting; ET = embryo transfer. 
*Calculated from assumed variances of 25% for additive, 10% for dominance, 5% for additive x additive, and 60% 

3Number of ideal-sized families required to provide information equivalent to aaual unbalanced population. 
for error. 

Three data sets were constructed to inves- 
tigate 1) presence of gene interactions affecting 
milk and fat yields, 2) potential to account for 
gene interactions in animal model evaluations 
of large populations, and 3) effects of includ- 
ing dominance relationships on additive solu- 
tions. To estimate dominance variance, stan- 
dardized first lactation milk and fat records 
were obtained from daughters and maternal 
granddaughters of 1003 popular bulls. These 
bulls included 879 bulls born from 1970 
through 1982 with daughters in more than 250 
herds plus 124 older bulls for relationship ties. 
Edited data were 765,868 records in 285,711 
herd-year-seasons and 100,917 filled sire- 
maternal grandsire (MGS) subclasses; records 
in progress were excluded. Because herdmates 
from less popular sires or MGS were excluded, 
records per herd-year-season were only 2.7, 
despite 6-mo seasons. 

The model of analysis was 

where Yijkl is an observation in herd-year- 
season hi from sire sj, MGS mk, interaction 
smjk with inbreeding coefficient F,k and 
regression coefficient b, and error qju. In- 
breeding was calculated from pedigrees traced 
only through sire and MGS pathways. Sires 
and MGS included only the most popular bulls 
and were treated as fixed to avoid biased esti- 
mation of additive variance. Random effects 
included only smjk and qjy; dominance rela- 
tionships among smjk were included (5). Sire- 
MGS interactions should have little confound- 

ing with genotype x herd interaction because 
three-quarter sisters usually are located in 
many different herds. Variance of interactions 
was estimated by the tilde-hat approach (12). 

To explore the feasibility of including 
dominance relationships in animal models, 
standardized first lactation records were ob- 
tained for 106 clones, 52,040 ET full sisters, 
and their herdmates. Records with less than 
200 d in milk were discarded, and total number 
of observations was 392,897. The model of 
analysis was 

Yijk = hi + aj + dj + bFj + q j k  [2] 

where Yijk is an observation for clone member 
k of genotype j. Variance assumptions in- 

TABLE 3. Milk recorded granddaughters of Round Oak 
Rag Apple Elevation (registration number 1491007) by 
country and path of descent. 

Path Number 
Granddaughter of of 
location descent' granddaughters 

us 3425 Elevation sons 802,862 
Elevation daughters 40,898 

France 163 Elevation sons 193,102 
Canada 150 Elevation sons 180,694 
Germany 333 Elevation sons 148,060 
The Netherlands 115 Elevation sons 125,181 
IMY 156 Elevation sons 119,595 
All granddaughters 1,6 1 0,392 

puter media were included. 
'Only sons with genetic evaluations released on com- 
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cluded additive genetic relationships among aj, 
dominance relationships among d,, mutually 
independent qjk, and fixed hi and b. Effects of 
inbreeding on variance of d, and covariance of 
a, and d, were ignored when the relationship 
inverses were constructed (5) .  

To compare solutions with and without 
dominance relationships, a smaller data set for 
the trait stature was examined. Clones and 
their herdmates were included for a total of 
6750 records. By chance, 537 full-sister fami- 
lies were included with 7 full sisters in the 
largest family. These data were analyzed with 
the model in Equation [2] and with a model 
that was identical, except that dj was removed 
and dominance relationships were ignored. Ad- 
ditive and dominance variances were assigned 
arbitrary values of 27 and 21% of phenotypic 
variance, respectively. 

Estimates of genetic variances are most pre- 
cise if data contain large numbers of several 
types of close relatives. The number of family 
types must equal or exceed the number of 
genetic variances to estimate. Thus, additive 
and dominance variance might be estimated 
from just full and half sibs (8, 9) whereas 
estimation of additive x additive variation as a 
third genetic component would require three 
types of relatives, such as three-quarter, half, 
and quarter sibs (1, 4). Quarter sibs, also 
known as half cousins, have just one grandpar- 
ent in common. 

Analyses using REML or approximate 
REML that include additive and nonadditive 
relationship matrices among animals should 
allow all types of relatives to contribute to 
estimation of genetic parameters. Although ex- 
act standard error estimates generally cannot 
be computed, inexpensive approximations can 
be obtained from variances of simple quadratic 
forms. 

Variances of Quadratic Forms 

Variation within and among families can be 
summarized by simple sums of squares, espe- 
cially with balanced data in which family size 
is constant. Variances of these sums of squares 
also can be computea easily by known rules to 
provide standard errors of parameter estimates. 
Information within and among families of 
clones, full sibs, half sibs, and parent-offspring 
pairs can be summarized by computing the 

following two quadratic forms for each relative 
type. 

If f families of a particular type each have 
m members, variation within families can be 
summarized as 

where i denotes family, j denotes member wi- 
thin family, and yij is an observation expressed 
as a deviation from population or herd-year- 
season mean so that expected value of yij is 0. 
Variation among families can be summarized 
as 

41 = [ E  i 

Quadratic q1 differs from the usual among- 
family sum of squares, (c yij)2 because 

expected contribution of within-family vari- 
ance has been removed. By subtracting 

y2, among-family variance is estimated 

i J  

U 
i j  

directly. 

notation as 
The two quadratics can be written in matrix 

with 

where subscripts m and f denote dimensions of 
vectors or matrices, I is an identity matrix, 1 is 
a column vector of l’s, and 63 denotes 
Kronecker product. Vector y contains observa- 
tions yij for all families of one type and has 
mean and variance 

E(Y) = 0; 
Var(y) = (I,.”, + lmimc$) 63 I, 
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where 4 denotes genetic covariance among 
family members as obtained from Equation 
[l], and .", denotes the phenotypic variance 
within such families. Covariance structure 
among actual families is more complicated 
because, for example, sires of half-sister fami- 
lies often are related rather than unrelated, as 
assumed here, and because family sizes are 
unbalanced. 

Mean and variance of quadratics for nor- 
mally distributed data are obtained from matrix 
identities E(y'Qy) = tr[QVar(y)] and 

tions and variances of qo and q1 require evalu- 
ating the matrix products 

Var(y'Qy) = 2tr[QVarO.)QVar(y)]. Expecta- 

Q ~ V W W  = ( - 1~c.2,) Q 14[ f(m - 1) I ;  

Evaluation of the trace function and further 
algebra gives 

and 

Because covariance of y'Qoy and y'Q~y is 
~@[QoVNY>Q iVar(~)l, 

Estimation of Genetic Parameters 

Variation among and within each family 
type is expected to contain the fractions of 
genetic variance in Table 1. Let v represent the 
vector of additive, dominance, additive x addi- 
tive, and environmental variance components 
to estimate, and let H represent the fractions of 
each variance expected within and among each 
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family type. If vector q includes quadratics qo 
and q1 for each family type, expectation and 
variance of q are 

E(q) = Hv; 
Var(q) = v,. 

Diagonals of V, .equal respective Var(q0) and 
Var(q1). Quadratlcs for different family types 
were assumed to be uncorrelated, even though 
the same animals may be included in more 
than one family type. Thus, off-diagonals of 
V, were set equal to 0 except for qo and q1 of 
the same family type. 

For simplicity, the number of quadratics 
included in q may be limited to only the 
number of variances to be estimated so that H 
is square and nonsingular. Variance estimates 
then can be computed as 

0 = H-Iq. 

With more family types and q longer than v, 
generalized least squares can be used. Then, q 
is treated as an ordinary vector of data and 
estimates are obtained as 

For these generalized least squares esti- 
mates, standard errors are obtained from 

Even for variances estimated with other 
methods such as REML or approximate 
REML, standard errors computed with this 
formula may serve as good approximations. As 
usual, constraints on parameter space are ig- 
nored in the standard error formula. Thus, 
computed standard errors may be too large, 
and confidence ranges could include negative 
values. Elements of V, can be calculated be- 
fore estimates are obtained from prior or start- 
ing values of variance components or after 
analysis from converged estimates. 

Optimal Family Size 

Families of intermediate size may provide 
maximum information regarding variance 
components. Suppose that the population size 
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(n) is constant, and n = fm. At the extremes, 
no information is provided either by n families 
containing only one member each (m = 1) or 
by only one extremely large family (f = 1) 
with n members. The family size that provides 
maximum information about 4 is 1 plus ratio 
of within-family to between-family variance 
(7), which can be derived from the partial 
derivative 

Finally ideal family size (m) is obtained: 

m = d~c$ + 1 

Many different family sizes may be present 
in unbalanced data. Quadratics can be modi- 
fied to accommodate unequal family size, or 
actual data structure can be converted to an 
equivalent, balanced design. Family size in the 
hypothetical balanced design can be chosen as 
the ideal size or, perhaps, as the median family 
size to represent actual data more closely. For 
each actual family of size m, equivalent num- 
ber (x) of ideal-sized or median-sized families 
of size s is calculated as the ratio of Var(q1) 
evaluated at s and m, or 

The x balanced families then provide a stan- 
dard error for estimating 0: equivalent to that 
of the actual family. Total number of balanced 
families is determined by summing x across all 
actual families. 

Tilde-Hat with Animal Model 

Approximate REML estimates can be ob- 
tained from many data sets for which exact 
REML cannot be computed. Unfortunately, the 
tilde-hat approximation (12) appears to be ill 
suited for use with animal models. Consider a 

simple model that has only additive relation- 
ships, each animal with one record (Z = I), and 
no fixed effects to estimate. With the ratio 
$/< denoted as k, “tilde” and “hat” solutions 
for the vector of additive effects u are = 
y/(l + k) and 0 = (I + A-’k)-’y. 

Variances are estimated by setting the quad- 
ratic fi’A-10 equal to its pseudoexpectation, 
<n/(l + k), and the quadratic y’y - y’0 equal 

to its pseudoexpectation, oen, where n denotes 
number of animals. In each round of iteration, 
new variance estimates would be 

2 

< = y’A-’(I + A-’k)-’y/n; e = [y’y - y’(1 + A-lk)-ly]/n. 

Multiplication by k of numerator and denomi- 
nator followed by addition and subtraction of I 
allows the expression for e to be rewritten: 

< = y’(1 + A-lk - I)(I + A-’k)-’y/(nk) 
= [y‘y - y’(1 + A-lk)-ly]/(nk). 

The new ratio always equals k, the 
previously supplied ratio. The algorithm makes 
no progress because the two quadratics are 
identical functions of the data divided by 
different constants. Similar algebra shows that 
this problem also occurs for animal models 
with fixed effects. The algorithm loses all in- 
formation from relatives because each “tilde” 
solution contains the animal’s own record 
only. The tilde-hat approach works with other 
models because data from descendants are ac- 
cumulated directly into the right-hand sides for 
sires, dams, or MGS. 

RESULTS 

Dominance variance was estimated to be 
3.5% of phenotypic variance for milk and 
3.3% for fat with standard errors of k4.2% in 
an analysis of 765,868 records. Variance of 
sire-MGS interactions was only .22% of 
phenotypic variance for milk and .21% for fat. 
Corresponding estimates were .19% for both 
traits if relationships among interactions were 
ignored. Main effects of sire and MGS were 
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TABLE 4. Previous estimates of dominance and additive x additive variance as percentage of phenotypic variance and 
standard errors computed from reported estimates and family numbers, sizes, and types. 

Variance estimate 

Additive x 
Authors Year Reference Trait Additive Dominance additive 

% SE % SE % SE 
Allaire and 
Henderson 1965 (1) Milk 11 6 50 26 16 31 

Fat' 23 10 -18 35 24 49 
Tempelman 
and Burnside 1990 (8)' Milk 4 0 2  6 6  . . .  . . .  

and Bumside 1990 (9)' Type 15 2 15 6 . . .  ... 
. . .  . . .  24 6 Fat 32 2 

Tempelman 

Hoeschele 1991 (4) Days open 2 1 2 4  1 4  

'Standard error calculations assumed dominance variance of 0 instead of -18. 
'Reported standard errors ranged from 2 to 3% for additive variance and from 8 to 10% for dominance variance. 

assumed to contribute 7.8% [(.25 + 
.0625)25%] of phenotypic variance, even 
though these terms were considered to be fixed 
in the model. Interactions were expected to 
contain 1/16 of dominance variance; contribu- 
tions of additive x additive and hlgher order 
variances were ignored. 

Sire and MGS evaluations were similar to 
published values because of large numbers of 
offspring included. Mean inbreeding of cows 
was only .67%, because pedigrees ended with 
the first ancestors born before 1970 and were 
not traced through maternal granddams. 
Regressions on inbreeding were -26 kg/l% for 
milk and -.9 kg/l% for fat. 

Estimates from previous studies of nonaddi- 
tive genetic variation are in Table 4; approxi- 
mate standard errors computed from numbers 
and types of relatives are included. Only Tem- 
pelman and Burnside (8, 9) published standard 
errors of their estimates. Although approximate 
standard errors from this study are slightly 
smaller than their published standard errors, 
they agree well, considering the combined ef- 
fects of the approximated data structure and 
generalized least squares approach used. 

Table 5 shows hypothetical standard errors 
that might result from analysis of all US Hol- 
stein data. Models with fewer nonadditive ef- 
fects produce smaller standard errors of vari- 
ance estimates, but these estimates may be 
biased if the omitted effects have positive vari- 
ance. Dominance and additive x additive vari- 

ances could have standard errors that are 1% of 
phenotypic variance, but little information is 
available regarding higher order interactions, 
such as additive x dominance. Attempts to 
estimate higher order parameters may greatly 
increase standard errors for other components. 

Table 6 shows hypothetical standard errors 
from including only certain types of relatives 
from the Holstein population. Dominance esti- 
mates with standard errors of 3% of pheno- 
typic variance might be produced using data 
from either three-quarter or full sibs. Clone 
families have all of their nonadditive effects in 
common but currently are too few in number 
to add much information about nonadditive 
variances beyond that provided by the more 
numerous full and three-quarter sibs. 

TABLE 5. Standard errors of additive (A), dominance (D), 
additive x additive (AA), and additive x dominance (AD) 
variance estimates using all US Holstein data to estimate 
variances from progressively more complete models. 

Standard error' Model 
effects A D AA AD b r  
~ 

A .12 .I 
A, D .I2 1.4 1.4 
A, D, AA .35 1.4 .86 1.5 
A, D, AA, AD .36 4.7 .87 10.5 6.1 
Assumed 
variances1 25 10 5 2 58+ 

'Expressed as percentage of phenotypic variance. 
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TABLE 6. Standard errors of additive (A), dominance (D), and additive x additive (AA) variance estimates from 
hypothetical analyses including selected family types from US Holstein data. 

Family type 

Standard error' Three- 
Full Parent- quarter Half Quarter 

Clone sister progeny sister sister sister A D AA 

X X X 1.0 2.7 4.3 
X X X 1.0 3.0 4.3 
X X X X X .3 1.4 .9 

X X X X X X .3 1.4 .9 
Assumed variances1 25 10 5 

'Expressed as percentage of phenotypic variance. 

Correlations of genetic variance estimates 
are shown in Table 7 for data on days open 
reported by Hoeschele (4). Strong negative 
correlations for this and for other data sets 
imply that when the additive x additive vari- 
ance estimate is higher than its true value, 
additive and dominance estimates are lower 
than their true values. Dominance estimates 
were positively correlated with additive in this 
model, but negatively correlated in models that 
omitted additive x additive variance. 
Knowledge of these correlations may help to 
explain unusual estimates and to predict how a 
deletion or bias of one component may affect 
estimates of others. Covariances of parameter 
estimates are computed automatically in the 
generalized least squares approach. 

Animal model analysis of Holstein clone 
and full-sister data required just over 2 million 
equations and a total of 15 million nonzero 
coefficients in the additive and dominance in- 
verses (Table 8). Some dominance relation- 
ships had to be ignored because ancestor inter- 
actions would not all fit in the available 48 Mb 

TABLE 7. Correlations among estimates of additive, 
dominance, and additive x additive variances from data of 
Hoeschele (4). 

Variance Addi- Domi- Additive x 
component tive nance additive Error 

Additive 1.00 .39 -.97 .37 
Dominance .39 1.00 -.47 -.68 
Additive x 
additive -.97 -.47 1 .00 -.32 

Error .37 -.68 -.32 1 .oo 

of memory. To reduce memory needs, mater- 
nal granddams without records were treated as 
unknown, and interactions among ancestors 
more than two generations removed from an 
animal with data were discarded. 

About three times as many equations and 
nonzero coefficients were generated for 
dominance compared with additive effects. Ex- 
cept for clones, each animal and ancestor had 
individual additive and dominance solutions. 
Dominance equations also were solved for 
259,702 filled sire-dam subclasses and 559,641 
ancestor subclasses needed to construct the 

TABLE 8. Equations and nonzero coefficients required for 
an animal model that includes dominance relationships for 
392,897 cows with records. 

Number 

Equation type 
Regression on inbreeding 1 
Herd-year-seasons 27,113 
Additive effects 
Genotypes with records 392,844 
Ancestor genotypes 188,773 

Genotypes with records 392,844 
Filled sire-dam subclasses 259,702 
Ancestor genotypes 188,773 
Ancestor sire-dam subclasses1 559,641 
Total equations 2,009,691 

Nonzero coefficients 
Additive inverse 

Dominance effects 

Unsummed 3,555,563 
Summed 2,681,360 

Unsummed 1 1,760.03 1 
Summed 7,474,689 

Dominance inverse 

'Remote ancestor subclasses were excluded. 
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TABLE 9. Genetic evaluations of clones with and without 
dominance in the model for stature data. 

Clone Additive 
members Additive Dominance' only 

2 +6.90 +5.31 +8.38 
2 +5.23 +2.54 +5.71 
2 +.69 +2.81 +1.49 
2 -2.39 -5.25 -3.43 
3 -5.39 -5.45 -6.85 
2 -1.28 -5.67 -2.22 

'Clone families are those with highest and lowest 
dominance solutions. 

dominance inverse. Dominance relationship 
matrices have fewer nonzero elements than do 
additive relationship matrices, but their in- 
verses often have more nonzero coefficients. 
Reasons are the addition of subclass effects 
and that submatrices of maximum size 9 x 9 
rather than 3 x 3 are needed to construct 
dominance inverses (5). 

The total time required to create and solve 
the animal model equations was 40 clock h on 
a Sun workstation (Sun Microsystems, Inc., 
Mountain View, CA). The large hash tables 
constructed to process animals and animal in- 
teractions nearly filled the available memory. 
Convergence of solutions to three significant 
digits required 150 iterations with successive 
overrelaxation and a relaxation factor of 1.5, 
the optimal factor as determined from a much 
smaller data set. 

Additive genetic effects of clones were 
overestimated if assumed dominance covari- 
ances were ignored in the stature data set. 
Clone families with highest and lowest 
predicted dominance effects had substantial 
changes in predicted additive merit ES shown 
in Table 9. Dominance effects, which are ex- 
cluded from the model, may not simply fade 
into the error term but instead may contribute 
to estimates of additive effects. Differences in 
Table 9 are large because of assumed 
dominance variance of 21% but demonstrate 
the potential advantage of including 
dominance relationships for data containing 
clones. 

CONCLUSIONS 

Reproductive technologies that include AI, 
ET, and embryo-splitting are producing fami- 
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lies of three-quarter sibs, full sibs, and clones 
of increasing size and number in dairy cattle. 
Members of such families share common gene 
interactions, which often have been ignored in 
selection and mating programs. Animal models 
that include a regression on inbreeding and 
additive, dominance, and additive x additive 
relationships now can account for all two-gene 
interactions shared by these relatives. All types 
of relatives would contribute to estimates of 
dominance and additive x additive variance if 
computed by REML. 

Approximate standard errors of variance 
components can be obtained inexpensively 
from sizes and numbers of each family type. 
Information from sums of squares within and 
among these families can be combined in a 
generalized least squares approach to approxi- 
mate information extracted by REML or ap- 
proximate REML. The tilde-hat approximation 
(12) was incompatible with the animal model. 
Smallest standard errors of variance estimates 
are obtained if all family sizes equal 1 plus 
ratio of within-family to between-family vari- 
ance. 

Dominance and additive x additive vari- 
ances could be estimated with standard error of 
only 1% of phenotypic variance if all US 
Holstein data were included. Computationally 
affordable analyses can yield standard errors of 
2 to 10%. Any estimates of higher order inter- 
actions, such as additive x dominance, would 
have standard errors greater than lo%, even 
from all data. An analysis of 765,868 milk and 
fat records representing 1003 sires and MGS 
estimated dominance variance as 3 f 4% of 
phenotypic variance with no additive x addi- 
tive variance assumed. 

An animal model including dominance rela- 
tionships among 106 clones, 52,040 ET full 
sisters, 340,751 herdmates, and 188,773 ances- 
tors was computationally affordable, although 
some remote relationships were excluded. 
Analysis of a similar but smaller data set 
showed that additive genetic merits of clones 
may be inflated if dominance relationships are 
ignored. 

ACKNOWLEDGMENTS 

Financial support from Eastern AI Coopera- 
tive and the National Association of Animal 
Breeders to I. Hoeschele is acknowledged 



SYMPOSIUM: REPRODUCTIVE TECHNOLOGY 290 1 

gratefully. The cooperation of the US dairy 
industry in supplying yield and pedigree data 
through the National Cooperative Dairy Herd 
Improvement Program is appreciated. Both J. 
Dekkers and R. Tempelman provided helpful 
comments and corrections to the manuscript. 

REFERENCES 

1 Allaire, F. R., and C. R. Henderson. 1965. Specific 
combining abilities among dairy sires. J. Dairy Sci. 
48:1096. 

2 Cockerham, C. C. 1954. An extension of the concept 
of partitioning hereditary variance for analysis of vari- 
ance when epistasis is present. Genetics 39:859. 

3Freeman, A. E., and C. R. Henderson. 1959. Genetic 
structure of dairy cattle herds in terms of additive and 
dominance relationships. J. Dairy Sci. 42:621. 

4 Hoeschele, I. 1991. Additive and nonadditive genetic 
variance in female fertility of Holsteins. J. Dairy Sci. 
74: 1743. 

5 Hoeschele, I., and P. M. VanRaden. 1991. Rapid 
inversion of dominance relationship matrices for 

noninbred populations by including sire by dam sub- 
class effects. J. Dairy Sci. 74557. 

6Kennedy. B. W., and L. R. Schaeffer. 1990. 
Reproductive technology and genetic evaluation. Page 
507 in Advances in Statistical Methods for Genetic 
Improvement of Livestock. D. Gianola and K. Ham- 
mond, ed. Springer-Verlag, Heidelberg, Germany. 

7 Robertson, A. 1959. Experimental design in the evalu- 
ation of genetic parameters. Biometrics 15:219. 

8 Tempelman, R. I., and E. B. Burnside. 1990. Additive 
and nonadditive genetic variation for production traits 
in Canadian Holsteins. J. Dairy Sci. 73:2206. 

9 Tempelman, R. J., and E. B. Burnside. 1990. Additive 
and nonadditive genetic variation for conformation 
traits in Canadian Holsteins. J. Dairy Sci. 73:2214. 

lOThoma, C. L., W. E. Vinson, R. E. Pearson, and H. 
D. Norman. 1985. Components of genetic variance 
and covariance for linear type traits in Jersey cattle. J. 
Dairy Sci. 68:2989. 
VanRaden, P. M., and 1. Hoeschele. 1991. Rapid 
inversion of additive by additive relationship matrices 
by including sire-dam combination effects. J. Dairy 
Sci. 74570. 
VanRaden, P. M., and Y. C. Jung. 1988. A general 
purpose approximation to restricted maximum likeli- 
hood: the tilde-hat approach. J. Dairy Sci. 71:187. 

Journal of Dairy Science Vol. 75, No. 10, 1992 




