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ABSTRACT

Genetic relationships between yield
and type traits were investigated using
multiple-trait REML procedures with an
animal model. Computing strategies
were developed to deal with large popu
lations and numbers of traits. Data con
sisted of records for 3 production and 15
type traits for 20,836 primiparous cows
from 1982 to 1988. The model included
2358 herd management effects, 28,749
animal effects, and 23 groups for un
known parents. (Co)variance components
were estimated using· a canonical
transformation with an accelerated
expectation-maximization REML al
gorithm. Direct inversion of the coeffi
cient matrix and solution to the trans
formed single-trait equations were by a
sparse matrix solver.

Heritabilities for milk, fat, and protein
yield were .44, .42, and .40, respectively.
Heritabilities for type traits ranged from
.10 to .42; the largest was for stature.
Dairy form had the largest genetic corre
lations with yield traits, which ranged
from .59 with milk to .68 with fat. Ge
netic correlations between all yield and
most type traits were positive (from .01
to .68); exceptions were fore udder at
tachment, udder depth, and front teat
placement (-.01 to -.44). Selection

Received May 29, 1991.
Accepted October 3, 1991.

1992 J Dairy Sci 75:544-551

solely for increased milk yield would
cause some udder characteristics to de
teriorate. Restricted selection for milk
yield while holding udder traits constant
would decrease response in milk yield by
15%.
(Key words: restricted maximum likeli
hood, multivariate analysis, animal mod
el)

Abbreviation key: AM = animal model, CPU
= central processing unit, EM = expectation
maximization, HYMC = herd-year-month
classification, HY8 = herd-year-season, 8M =
sire model.

INTRODUCTION

The primary emphasis in dairy cattle selec
~on is for yield traits because highest produc
mg cows usually are more profitable (1). In
general, profitability will be even higher if
cows produce large quantities of milk in rou
tinel~ initiated lactations w.hile also remaining
functionally sound. Selection on yield traits
alone could decrease merit for other traits.
Selection emphasis on type traits associated
with increased herdlife may be beneficial to
decrease involuntary culling and increase
profitability (16). One of the primary reasons
~or co~ecting and ?tilizing information on type
I~ to atd breeders m selecting profitable, func
tIonal cows so that early culling for causes
unrelated to yield (involuntary culling) can be
avoided.

Since 1983, the Holstein Association has
collected data on 14 type traits scored on a
linear scale (18) as well as overall conforma-
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tion (final score). Emphasis placed on each of
these traits in a selection program including
yield traits depends partly on their genetic
correlations with yield In particular, selection
criteria should include traits that change in the
undesired direction if selection is for yield
traits only.

Information on genetic relationships be
tween yield traits and linearly scored type
traits is limited Meyer et al. (11) reported
genetic correlations ranging from -.52 to .24
between linear type scores and milk yield in
primiparous British Friesians. Udder depth and
fore udder attachment had largest antagonistic
correlations with yield (-.52 and -.37, respec
tively). Corresponding phenotypic correlations
were smaller in magnitude and ranged from
-.27 to .21. Genetic correlation between milk
yield and final score in first parity was -.14.

Foster et al. (4) obtained genetic correla
tions between first lactation herdmate devia
tion for milk: and fat and linear type traits for
Holsteins. For linear traits similar to those
used by the Holstein Association, the largest
negative genetic correlation with deviation for
milk was -.12 for udder depth.

Norman et al. (14) calculated genetic corre
lations between first lactation yields and linear
type traits for Guernseys and Jerseys. Largest
negative genetic correlations with yield were
-.59 and -.56 for udder depth and fore udder
attachment in Jerseys and -.29 and -.25 for
foot angle and thud width in Guernseys. For
both breeds, largest positive correlations with
yield were for dairy character. Genetic correla
tions between milk yield and final score were
.25 for Guernseys and .21 for Jerseys.

These analyses used the sire model (SM),
which neglects all female relationships. Studies
using the animal model (AM), which considers
all known relationships, indicate that it results
in higher estimates of heritability than SM (12,
21,22). Visscher and Thompson (22) state that
SM accounts for the male genetic variation,
whereas AM takes both male and female ge
netic variation into account. If selection inten
sity for males were greater than for females,
the male genetic variance would be smaller.
Subsequently, SM might underestimate genetic
variability and, thus, lead to poor estimates of
genetic parameters, even with large data fIles.

The AM estimates of genetic parameters
also could be useful in genetic evaluation sys-

terns. Many genetic evaluation programs, in
side and outside the US, have changed or are
changing from SM to AM. It appears desirable
that the parameters for these evaluations be
derived from the same model as that used in
the evaluation, i.e., AM.

Estimates of genetic correlations between
yield and type traits by an AM were not avail
able, and current computing algorithms for
multitrait REML were inadequate to process
the large numbers of animals needed to esti
mate these parameters with sufficient accuracy.
Objectives of this study were to develop an
efficient algorithm to estimate genetic
parameters with an AM and to apply this
algorithm to multitrait yield and type data.

MATERIALS AND METHODS

Data

Data were from primiparous Holstein cows
in every third herd enrolled continuously be
tween 1982 and 1988 in the Dairy Herd Im
provement Registry program. Each animal's
record contained 15 type traits and 3 produc
tion traits. Type scores and lactation informa
tion were collected between 1982 and 1988.
Type scores included 14 linearly evaluated
traits (scored on a 50-point scale) preadjusted
for age of cow and stage of lactation. Final
scores were preadjusted for age of cow; low
scores also were preadjusted upward to elimi
nate skewness. Yield records were 305-d twice
daily mature equivalent first lactation yields.
Only cows with both yield and type informa
tion were included Cows must have been clas
sified before 43 mo of age and, at most, 9 mo
after calving. After edits, the data set contained
20,836 cows. Additionally, the pedigree file
contained 5502 dams without records and 2441
sires, for a total of 28,779 animals. Unknown
parents were assigned to 23 groups. Records
for type traits were distributed in 1616 herd
year-month-classification (HYMC) subclasses.
Records for production traits were distributed
in 2358 herd-year-seasons (HYS) for which
seasons were defined as May to October and
November to April. Because of the require
ments of the computational procedure of an
identical model for all traits, HYS were se
lected as the contemporary groups for yield
and type traits. The bias caused by inappropri-
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t(a) = trace[A-ICuu(a)] [2]

TABLE I. Means and standard deviations for the 3 yield
traits (kilograms) and IS type traits (points).

with di an element of d. Calculating d ex
plicitly involves dense matrix algorithms and

n

t(a) = L 1/(di + a)
i=1 [3]

1771.5
63.7
53.1

4.0
8.5
7.6
7.7
7.5
5.1
7.3
6.7
6.3
72
7.4
7.3
5.6
4.6
6.1

SDx
9239.3

333.8
294.3

81.6
322
30.0
32.0
30.6
25.1
28.5
272
24.5
25.5
27.3
272
272
24.0
24.8

Trait

MiJk
Fat
Protein
Final score
Stature
Strength
Body depth
Dairyfonn
Rump angle
Thurl width
Rear leg set
Foot angle
Fore udder attachment
Udder height
Udder width
Udder cleft
Udder depth
Front teat placement

inverse corresponding to animals without
records were not computed because their con
tribution to the trace function is known and
equals l/a per animal (13), where a is the
variance ratio. Finally, to obtain better conver
gence rate, the expectation-maximization (EM)
REML algorithm was replaced by the proce
dure described by VanRaden (19).

Interpolation of the Trace Function. Inver
sion of the mixed model coefficient matrix
would have to be performed too many times to
be computationally feasible. Assuming that
100 rounds of iteration provided adequate con
vergence, the EM-type algorithm would re
quire 100 rounds x 18 traits = 1800 matrix
inversions or evaluations of the trace function

where cuu is the submatrix of the inverse of
the mixed model equations corresponding to
equations for animal effects. The trace function
is equivalent to a simpler form after di
agonalizing the system of equations (6):

where y is a 20,836 x 18 matrix of records; h
is a 2358 x 18 matrix of fixed contemporary
groups; u =a + Qg is a 28,779 x 18 random
matrix of total genetic merit effects; a is a
28,779 x 18 matrix of additive genetic animal
effect; g is a 23 x 18 matrix of unknown
parent groups; e is a 20,836 x 18 random
matrix of residual effects; H and Z are inci
dence matrices relating h and u to y, respec
tively; and Q is an incidence matrix relating
animals to unknown parent groups. Animal
and residual effects were treated as random
with variances G @ A and E @ I, respectively;
G and E denote covariance matrices among
the 18 traits for the animal and residual effects,
respectively; A denotes additive genetic rela
tionship among the animals; and @ denotes
Kronecker product.

Computational Strategy

The estimates of G and R were obtained by
multiple-trait REML using a canonical trans
formation (6). After the transformation, single
trait estimates were obtained using a sparse
matrix solver modified for the efficient use of
the supercomputer (12). Standard errors of the
estimates of variance components were ap
proximated as in VanRaden (19); however, the
accuracy of this approximation for AM has not
been determined.

Three techniques were used to reduce the
cost of computations approximately 500-fold.
which made the computations feasible. First,
the trace function was tabulated from relatively
few points, to avoid inverting the coefficient
matrix many times. Subsequent references to
that function were by interpolation or extrapo
lation. Second. to reduce the inversion central
processing unit (CPU) time, columns of the

y = Hh + Zu + e [1]

Model

The linear mixed model used was

ate contemporary groups for type traits was
small because of a high level of overlapping:
74% HYS subclasses contained only a single
HYMC subclass; the remaining 26% contained
2 HYMC subclasses. Means and standard devi
ations for the 18 traits are given in Table 1.
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Figure I. Shape of the trace function obtained from a
test data set.

is prohibitively CPU expensive for matrices of
order greater than 5000, even on supercom
puters. Figure 1 presents a typical shape of
t(a) for different values of a, and Figure 2
shows the distribution of d, both obtained from
a data set with 430 animals.

Because the trace function is continuous
and smooth, it can be interpolated or extrapo
lated from a small set of points, which can be
computed explicitly. High accuracy of the ap
proximated trace is important because even
small errors in the value of the trace can cause
large differences in the value of the REML
estimates. For example, in this study, differ
ences in approximated traces on the fourth
significant digit caused differences in estimates
of variance components on the second signifi
cant digit. The spline functions did not pro
duce adequate accuracy for the interpolation or
extrapolation. Much higher accuracy was 0b
tained using the function that resembles [3]

5
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2

o [LI~_ ___"___ _'________'_ __'__ __'
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Figure 2. The disbibution of the diagonal elements d in
the diagonalized mixed model equations obtained from a
test data set.

where ~ were estimated separately for each a
from m closest points, and WI are arbitrary
weights. For m =n and WI =1/n, formulas [4]
and [3] are the same. For m =1, the weight WI
is I, and ~ is approximately an average of all
elements d. An example of estimating
parameters ~ in function [4] for m =1 and m =
2 is given in the Appendix. Formula [4] with
m > 2 was not used because of difficulties in
estimating the parameters Si' In this study. the
value of t(a) was computed explicitly only for
33 points: a = .4, .4 x 1.2, .4 x 1.22, ••••4 X

1.232 using the inversion and subsequent refer
ences to t(a) used this function with m =2, WI

= .2, and W2 = .8.
EM-Type FonnuJas. In our experiments, the

EM REML formula (2) was very slow and did
not converge in 500 rounds. The formula by
VanRaden (19)

~ _ i'A-li - ~~ [0 - a t(a)]

a - [0 - a t(a)] (1 -~) , [5]

m

t(a) ... n L WI/(~i + a),
i-I

EWi = 1

where a is a single-trait direct genetic animal
effect and -00 < P < I, converged up to 20

[4] times faster but was dependent on the choice
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TABLE 2. Estimates (Est) of residual and genetic variances (Var), heritabilities, and approximate standard errors for the
18 traits.

Residual Ga:letic Heritability

Trait V81 SB V81 SB Est SE

Milkl 10.6 .1 8.4 .4 .44 .01
Fa~ 14.3 .1 10.5 .5 .42 .01
Protein2 9.8 .1 6.5 1.3 .40 .01
Final score 9.6 .1 3.8 .3 .29 .02
Stature 33.7 .4 24.5 1.3 .42 .01
Strength 33.2 .4 13.6 1.1 .29 .02
Body depth 31.1 .3 17.0 1.1 .35 .02
Dairy form 34.4 .4 13.5 1.1 .28 .02
Rump angle 17.2 .2 6.8 .6 .28 .02
Thud width 32.8 .3 11.7 1.0 .26 .02
Rear leg set 33.9 .4 6.2 1.0 .16 .02
Foot angle 30.1 .3 4.5 .8 .13 .02
Fore udder attacbment 34.9 .4 10.8 1.1 .24 .02
Udder height 39.4 .4 7.3 1.1 .16 .02
Udder width 36.7 .4 8.6 1.1 .19 .02
Udder cleft 25.1 .3 2.8 .7 .10 .02
Udder depth 12.2 .1 4.1 .4 .25 .02
Front teat placemeDt 25.8 .3 7.4 .8 .22 .02

lDivided by loS.

2Divided by 100.

of 13, which should reflect approximately the
proportion of error variance in the expectation
of a'A-1a . For P=0, the algorithm is the same
as that given by Harville (5). For P< 0, it is
slower, and it diverges for P ~ 1. In SM,
choices of P ;5;; .95 were found to give good
convergence (19). In AM, the optimal value of
13 was between .5 and .8; an average value of
.6 was best in this study.

RESULTS AND DISCUSSION

The computation of the 33 trace points took
8 h of CPU time on a Cray-2 (Cray Research
Inc., Minneapolis, MN) supercomputer. After
100 iterations of applying canonical transfor
mation, computing solutions, and calculating
new values foe variances and covariances,
which took another 10 h of CPU time, the
estimates of G and R were changing less than
.014% on average in one round, and computa
tions were terminated.

Estimates of heritability, genetic and resid
ual variances, and standard errors are in Table
2. Heritabilities foe milk, fat, and protein
yields were .44, .42, and .40, respectively.
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These estimates were higher than most other
estimates of heritability using the SM (10),
possibly indicating a large difference in selec
tion intensities between males and females
(22). Higher values for heritabilities in this
study could also result from the use of regis
tered animals only and from accounting for
genetic levels of unknown parents. For com
parison, in a study using an intraherd AM in
which herds were stratified by yield level,
heritabilities for milk and fat were .37 and .42
in the highest producing herds, respectively
(21). Heritabilities for the type traits were gen
erally slightly higher than those obtained in
independent studies (17, 20), indicating
smaller differences in selection intensities for
these traits between cows and sires (22).
Largest differences between estimates obtained
in this study and those currently used in Hol
stein Association genetic evaluations (20) were
.06 for fore udder attachment and .05 for udder
cleft.

Genetic and residual correlations between
the yield and type traits are in Table 3. Genetic
correlations among linear type traits were simi
lar to those reported by VanRaden et al (20);
the largest difference in absolute magnitude



TABLE 3. Genetic (above diagonal) and residual (below diagonal) correlations (x 1(0) for the 18 lI'aits.1

MY FY py FS ST SR BO OF RA TW RL FA FU UH UW UC UD TP ;
MY ... 69 90 16 06 02 IS S9 18 11 09 10 -31 19 31 01 -44 ~

~FY 79 ... 78 33 13 13 26 68 01 12 -01 13 -12 28 33 17 -29 01
py 9S 83 ... 27 13 10 23 67 11 11 OS 17 -21 32 40 IS -38 -01
FS 23 IS 20 ... 7S 62 70 29 -IS 6S -11 28 54 S9 60 S2 33 S6
ST 11 08 10 30 ... 71 81 27 03 68 -Q9 28 18 16 19 23 26 21

ISR 06 OS 08 30 49 ... 90 -06 -01 76 -20 46 16 23 41 34 -01 24
BO 12 10 12 33 S4 69 ... 31 00 78 -06 32 10 2S 40 2S -10 23
OF 23 14 17 30 12 -11 07 ... 14 13 26 -18 -19 16 14 -12 -30 -os
RA -02 02 00 -12 07 00 01 -06 ... -20 -26 -OS -Q9 -IS -11 -08 -os -10
TW 07 06 09 2S 28 36 33 00 -03 ... -Q9 32 22 30 41 18 OS IS

IRL "()1 03 -01 -OS -03 "()8 -06 12 04 ..()2 ... -40 02 00 -Q9 -20 04 -IS
FA 01 00 01 29 12 IS 14 02 -06 14 -12 ... 06 OS 13 -Q9 -11 -01
FU 04 01 02 49 12 13 13 11 -11 11 -os 16 ... 47 39 51 78 67
UH 17 11 14 S2 15 15 16 17 -10 IS -os 17 43 ... 91 48 13 47
UW 22 16 21 52 18 20 20 17 -06 23 -06 18 39 69 41 -03 43 0...

I uc 06 03 04 41 03 00 04 21 -Q7 06 OS 12 30 30 29 ... 42 66 :2
UD -14 -14 -15 27 11 ..()2 ..()4 04 -os 01 "()3 11 33 19 13 27 ... 43

!TP 06 OS OS 37 04 01 03 15 -os OS OS 11 3S 24 25 41 2S ...
2-

1MY .. Milk yield, FY = fat yield, Py = protein yield, FS = final score, ST = stature, SR .. strength, BO = body depth, OF = dairy fonn, RA = rump angle, TW .. thurl width,g. RL = rear leg SClt, FA = foot angle, FU = fore udder attachment, UH .. udder height, UW = udder width, UC = udder cleft, UD .. udder depth, TP = front teat placemenL
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was .33 for the correlation between udder
depth and rear udder width. Seven traits had
genetic correlations with yield traits greater
than .20 (absolute value) and only 4 traits had
genetic correlations with yield greater than .30.
Genetic correlations between milk yield and
type traits ranged from -.44 (udder depth) to
.59 for dairy fonn. Genetic correlations be
tween udder depth and other udder traits were
similar to those reported in other studies (8, 9,
20). Final score was most highly correlated
with fat yield (.33). Correlations of type traits
with fat and protein yields were similar to
those with milk yield, except that they tended
to be slightly larger in magnitude. Single-trait
selection for milk yield would result in deeper
udders with more loosely attached fore udders.
Traits associated with body size would be least
affected by selection for milk yield.

Response to 5electlon
for Milk Yield

Using parameter estimates obtained for
yield and type traits, correlated responses in
type traits were calculated assuming a speci
fied response to selection for milk yield 0b
taining a 4525-kg response (increase) in milk
yield, which could occur over a 25-yr period,
would increase dairy form 10.8 points, body
depth 3.1 points, rear udder width 4.6 points,
and decrease udder depth and fore udder at
tachment 4.4 and 4.9 points, respectively. Cor
related change for udder depth and fore udder
attachment is in an undesirable direction.

A restricted index was also used to calculate
maximum response in milk yield while main
taining udder depth at its current value. Using
the restricted index would result in a 15%
decrease in genetic gain for milk yield Stan
dardized weights for milk yield and udder
depth are 70:30, or approximately a 2:1 ratio,
which is equivalent to current weights in the
Type-Production Index (15).

CONCLUSION

Estimates of heritability for yield and type
traits using an AM are moderately high. Ge
netic correlations between yield and some lin
ear type traits were antagonistic. Continued

Jomml of Dairy Science Vol. 75, No.2, 1992

selection for milk yield would cause deteriora
tion in some confonnational traits. The udder
traits would be those most affected Selection
to maintain udder depth would decrease prog
ress for milk yield by about 15%.

Estimation of variance components by
REML procedures for a multitrait AM is com
putationally feasible for data containing up to
30,000 animals. The computer cost experi
enced in this study could have been further
reduced with several programming changes.
For example, the solutions to the mixed model
equations could be obtained using robust itera
tive methods. Use of the JCG method in
ITPACK (7) resulted in a fivefold reduction of
the iteration time, provided that the coefficient
matrix was not restricted to full rank: as is
required by SMPAK (7). The inversion time
could decrease 50 times if only selected ele
ments of the inverse were computed from the
sparse factors of the coefficient matrix (3). Use
of such techniques might allow the results
presented here to be computed on a worksta
tion or fast personal computer or allow much
larger populations to be analyzed on a super
computer.
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APPENDIX
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