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ABSTRACT

A multitrait analysis of test day yields is proposed
that includes 60 traits [3 yield traits (milk, fat, and
protein), 2 parity groups (first and later) per yield
trait, and 10 stages of lactation per parity]. To reduce
the computations needed for the 60 traits, test day
effects are estimated within the herd before analysis
across herds, the rank of the genetic (co)variance
matrix is reduced, a canonical transformation is used
with missing values replaced by their expectations,
and a repeatability model is applied to allow inclusion
of parities after second. Historical 305-d records are
included through their correlations with test day ef-
fects. Possible benefits from this model include 1)
more accurate estimation of environmental effects
from including the influence of particular days of
recording, 2) optimal use of information from all test
days (especially for lactations with long intervals
from calving to first test or between tests), 3) im-
proved accuracy of evaluations for component yields
through contributions from information for milk yield,
and 4) greater stability of bull evaluations from ac-
counting for genetic differences among daughters in
the shape of lactation curve and maturity rate.
( Key words: test day model, genetic evaluation, mul-
titrait analysis, yield traits)

Abbreviation key: TD = test day.

INTRODUCTION

Individual yields on test day ( TD) can be the basis
of a genetic evaluation system instead of estimates of
yield during the first 305 d of lactation. Lactation
yields typically are estimated from monthly measure-
ments of milk volumes and analysis of milk samples
for fat and protein percentages (24). Recent work
(15, 21, 23) with TD data has confirmed the greater

precision that can be achieved in accounting for en-
vironmental effects by including a TD effect. Van
Tassell et al. (23) found heritability increases of 12%
for milk yield, 11% for fat yield, and 17% for protein
yield; correlations among traits increased 2 to 14%. At
20, 150, and 280 DIM, Ptak and Schaeffer (15) found
a reduction in residual variances for milk yield from
11.7, 4.5, and 7.6 kg2 to 8.4, 3.3, and 5.1 kg2, respec-
tively, for a model that included effect of herd and TD
rather than effect of herd, year, and season.

A recent review (22) reports two approaches for
use of TD data: 1) correction for environmental in-
fluences at the TD level followed by aggregation into
a lactation measure for later processing and 2) fitting
a model to TD data directly. Both approaches provide
a more accurate accounting of environmental effects.
Lactation records of contemporaries often do not in-
clude all of the same TD because of differences in
calving date and lactation length, but the TD effect in
a TD model is an estimate of the environmental effect
of the same day for all cows that contribute to the
effect. Including a TD effect increases the precision of
accounting for environmental effects. Direct analysis
of TD yields is computationally more demanding but
allows for genetic differences in lactation curves.

The cost of milk recording is being reduced by
making fewer measurements, which causes longer
intervals between milk weighings and less frequent
collection of milk samples. Regardless of the length of
the interval between tests, a TD model can appropri-
ately weight the recorded TD information by consider-
ing the covariances among TD yields. Yields from two
TD that are close and, therefore, highly correlated
would not contribute as much information as yields
from two more distant TD. Use of TD data would
allow the use of information from lactations with long
intervals between milk recordings because estimation
of yields for unrecorded intervals would not be re-
quired. Although a TD model cannot overcome the
loss in accuracy from fewer TD, it does allow yields
from any combination of TD to be included appropri-
ately.
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Several countries currently have evaluation sys-
tems that use TD data that have been adjusted and
then combined into a lactation measure. The Aus-
tralian system, implemented in 1984, estimates and
removes TD effects before creating a lactation meas-
ure (10). In the northeastern US, effects of TD, in-
cluding age and lactation stage, are estimated within
a herd to create adjusted lactation measures for an
analysis across herds (1, 3). A method recently deve-
loped in New Zealand ( 9 ) combines TD into a
270-d lactation yield that weights the individual TD
according to the correlations among them. The corre-
lation declines linearly as days between TD increase.

In Canada, TD yields are analyzed directly for
genetic evaluation of some traits. Yield traits of dairy
goats (19) and SCS of dairy cattle (16) are analyzed
with a model that estimates regression coefficients for
lactation curves within 24 groups by parity, age at
parturition, and season of parturition for the popula-
tion being evaluated. The Canadian Genetic Evalua-
tion Board has recommended implementation in 1998
(L. R. Schaeffer, 1996, personal communication) of a
TD model for yield traits of dairy cattle. The mul-
titrait model would include milk, fat, and protein
yields and SCS for each of the first three parities for a
total of 12 traits. Coefficients of the lactation curve
would be fit for each animal as random effects (7, 8)
using the additive relationships among animals and
the genetic covariances among the random regression
coefficients. The presence of only one trait would be
sufficient for a record to be used. This approach would
allow estimation of genetic differences in persistency
for yield traits of dairy cattle.

Interest is increasing worldwide in TD models.
Genetic parameters of TD yield have been estimated
for Finnish Ayrshires (14) and Spanish Holstein-
Friesians (18). A TD model for multiple parities has
been applied to predict genetic merit for yield traits of
German Holsteins (17).

A multitrait analysis allows information for one
trait to contribute to the accuracy of correlated traits
and also allows a correlation of <1 to be assumed
between observations that have been treated as the
same trait. A multitrait analysis that includes milk,
fat, and protein yields allows measurements of milk
volume to contribute to the accuracy of evaluations of
milk components because of the correlations between
components and milk volume. This characteristic is
particularly useful when component determination is
less frequent than measurement of milk volume.
More frequent collection of milk volumes and less
frequent determination of milk components are ex-
pected as the use of inline equipment for recording
daily milk volumes and the expense and incon-

venience of component sampling increase. In this en-
vironment, a multitrait system can provide more in-
formation on genetic merit for component yields than
a single-trait system can.

A repeatability model is typically used for genetic
evaluation of dairy cattle. Such a model assumes that
each lactation is an expression of the same genetic
trait. Estimated genetic correlations between first
and second parities ranged from 0.88 to >1.00 for
milk, fat, and protein of Australian Black and White
cattle (12); however, genetic correlations between
parities of Spanish Holsteins ranged from 0.65 to 0.91
among parities 1 through 4 for milk, fat, and protein
(4) . For TD milk yields, genetic correlations between
parities ranged from 0.52 to 0.88 among parities 1
through 3 (18). Those correlations of <1 indicate
some divergence from the assumption that milk yield
is the same trait across parity. A multitrait model
that includes parities as separate traits can accommo-
date this correlation structure. The benefit of a mul-
titrait analysis over several single-trait analyses is
greatest when some traits have missing observations
or when heritability of all traits is not the same and
thus genetic and phenotypic correlations are not
equal. Similarly, when separate genetic effects are fit
to lactation stages or when coefficients of the lacta-
tion curve for each cow are fit by random regression
(6) , genetic differences in the shape of the lactation
curve (persistency) can be detected (13, 18, 21, 22).

A plan follows for a multitrait TD model for calcu-
lation of genetic evaluations for yield traits of US
dairy cattle that is patterned on the method currently
being developed for Australia (25). This approach
includes a full multitrait model with a more realistic
(co)variance structure than the current model for
USDA-DHIA genetic evaluations and is computation-
ally feasible to implement.

MATERIALS AND METHODS

Data

Nearly complete TD data for calvings since Janu-
ary 1, 1990 have been extracted from records provided
routinely for USDA-DHIA genetic evaluations and
from archive files provided by dairy records process-
ing centers and universities. The TD information is
stored in a database table that includes cow identifi-
cation, calving date, DIM, milking frequency, milk
yield, fat and protein percentages, and SCS. Herd
code is stored in a lactation table, and information on
the type of milk recording is stored in a table for each
herd test date. Because cows sometimes change herds
and because most of the archive data are stored based
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on lactation or cow, an incorrect herd code sometimes
is associated with a TD record. The data table based
on herd and TD includes the number of cows with
yield on that TD, which allows herd code errors to be
detected. Lactation yields (305-d records) can be
used for calvings before 1990 and for herds with
limited TD data.

Statistical Model

A proposed model for TD yield is

yijklmnopqrstu = htpijkp + aijmpq + dimijmps
+ pdoijmr + doijmu + hysijlmpt
+ hsijopt + bvinpt + peinpt
+ eijklmnopqrstu

where yijklmnopqrstu is TD yield of trait i (milk, fat, or
protein) in herd j on TD k in season l of year m from
cow n that was sired by bull o and that calved for
parity p at age q after r days open and currently has s
DIM (t mo in milk) and u days open; htp is fixed
effect of herd, TD, and parity; a is fixed effect of age
at calving within parity; dim is fixed effect of DIM
within parity; pdo is fixed effect of previous days
open; do is fixed effect of current days open; hys is
fixed effect of herd-year-season; hs is random effect of
interaction of herd and sire; bv is random breeding
value of the cow; pe is random effect of permanent
environment; and e is random residual pertaining to
TD yield.

The model assumes distinct traits by months in
milk and does not allow for two tests during the same
month. Months in milk can be determined by assign-
ing TD to 1 of 10 30-d groups starting at 5 DIM. To
avoid loss of data when >1 TD would be assigned to
the same group, one of the TD can be assigned to an
adjacent group if the group is empty and the TD is
within 10 d of that group; otherwise, yields can be
averaged. An alternative is to reduce the group size to
20 d so that multiple observations per group would be
rare. The htp effect is across months in milk to ensure
sufficient observations per TD, but the hys effect is
specific for each trait during the analysis across herds
to allow for differences in the effect of season on the
traits for individual months in milk. Between two and
four seasons are proposed. Additional research will
determine the best representations of dim, pdo, and
do effects; individual effects by herd and parity group-
ing may be appropriate. For hys, hs, bv, and pe,
parities are grouped as first or later parity.

This multitrait model includes 60 traits: 3 yield
traits (milk, fat, and protein), two parity groups
(first and later) per yield trait, and 10 stages of

lactation per parity. The TD yields within a lactation
are considered to be separate traits. Data from pari-
ties 3 through 5 are considered to be repeated obser-
vations of the 30 traits for parity 2 (later lactations).
This repeatability model allows for multiple parities;
each lactation conceptually contains all 60 traits but
with missing observations for ≥30 traits.

The variance components that are required for the
60 traits would be time-consuming to estimate. Some
structure could be imposed by forcing regular decay in
the correlation between TD as the interval between
them increases. The effect of interaction of herd and
sire is included to limit the evaluations of bulls with
daughters in only a few herds. To achieve this damp-
ening, the variance assigned for the hs effect will be
larger than the hs variance estimated from the data.
An arbitrary portion of the pe variance can be as-
signed to hs variance. The (co)variance matrices
must include 305-d yield so that covariance with each
month in milk is available.

Computational Method

First, data are adjusted (adj) using solutions esti-
mated for hys, hs, bv, and pe effects from a previous
(prev) analysis across herds:

yadjprev
= y – hysprev – hsprev – bvprev – peprev.

Yield from a 305-d record would be adjusted similarly
to TD yield. Then, effects for htp, a, dim, pdo, and do
are estimated within the herd (wh):

yadjprev
= htpwh + awh + dimwh + pdowh + dowh + ewh.

Effects of awh, dimwh, and dowh are estimated with an
across-herd component to incorporate prior informa-
tion (9) . Data then are adjusted for effects within the
herd:

yadjwh
= y – htpwh – awh – dimwh – pdowh – dowh,

followed by estimation of hys, hs, bv, and pe effects
across herds with a multitrait animal model. Six
linear functions are imposed on the genetic
(co)variance matrix to reduce its rank, and a canoni-
cal transformation is applied to create the known
contributions to 6 traits with genetic variance >0.
During each round of iteration, the contribution to
those variables from the missing observations is cal-
culated from the solutions from the previous round of
iteration. After convergence, solutions for the 6 traits
are backtransformed to the original 60 traits and
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allowed to affect solutions for htp, a, dim, pdo, and do
effects within the herd until convergence is reached.
The final step is to calculate reliabilities.

Reduction of the rank of the genetic (co)vari-
ance matrix by imposing six linear functions.
Selection decisions for dairy cattle do not require
specific estimates for genetic effects of monthly TD for
all traits. Functions of those TD effects often are
sufficient. However, by defining 60 traits, the covari-
ance structure can be accommodated.

The number of computations that are needed for
prediction of EBV can be reduced if fewer traits are
analyzed. The rank of the genetic (co)variance
matrix ( G) , which has order 60, can be reduced to 6
so that G retains only information for lactation yield,
aspects of the lactation curve, and yield differences
due to parity. Because of the rank reduction, only 6
canonical traits need to be analyzed after canonical
transformation.

The goal is for the matrix with reduced rank ( G*)
to include nearly all of the variation in lactation
yields of milk, fat, and protein. The largest eigenvec-
tors of the canonical decomposition of G and the
phenotypic (co)variance matrix are not proposed be-
cause selection response with variance components
from Australian data that used the first five eigenvec-
tors led to some loss of accuracy in the EBV for
lactation yield (K. Meyer, 1995, personal communica-
tion).

Therefore, G* was defined by six linear combina-
tions of TD traits that are of interest in the selection
objective: 1) S bvmilk across parities and TD, 2) S
bvfat across parities and TD, 3) S bvprotein across
parities and TD, 4) linear trend in bvmilk, bvfat, and
bvprotein across TD for both parity groups, 5) quad-
ratic trend in bvmilk, bvfat, and bvprotein across TD for
both parity groups, and 6) (bvmilk, bvfat, and bvprotein
for first parity) – (bvmilk, bvfat, and bvprotein for later
parity). The first three combinations provide informa-
tion on lactation yield for milk, fat, and protein. The
linear and quadratic weightings of yield traits are
expressed in units of standard deviation and provide
information on persistency. The difference between
first and later parities also is expressed in standard
deviation units and is an indicator of maturity rate.

Canonical transformation. If no data are miss-
ing, a canonical transformation can be used to convert
a multitrait analysis into single-trait analyses, which
substantially reduces computational requirements.
Each lactation can contribute a maximum of 30 TD
yields for first or later parity; the other 30 traits, and
perhaps more, are missing. Lactations with <10 TD
would have more missing values. For a lactation that
is represented by only a 305-d record, all 60 traits

would be missing, but the 6 canonical traits would
contain known data from the 305-d record derived
from its correlations with the 60 TD traits. Ducrocq
and Besbes ( 2 ) extended the application of canonical
transformation to situations in which not all traits
were measured by replacing missing values with their
expectations during each round of iteration. Return-
ing to the original scale during iteration is not neces-
sary.

A canonical diagonalization depends on simultane-
ously diagonalizing the (co)variance matrices for ran-
dom effects. Although the genetic and residual
(co)variance matrices can be diagonalized, a repeata-
bility model also includes permanent environment as
a random effect. Lin and Smith (11) describe a
method of approximate diagonalization that allows
the canonical transformation to be extended to models
with multiple random effects. The success of this
approach is measured by the relative size of the off-
diagonal elements after diagonalization. If the
(co)variance matrix of hs is defined as proportional
to the (co)variance matrix of pe, the matrix will
diagonalize as effectively as (co)variance of pe.

The residual covariance matrix and G* are used in
creating a transformation matrix to construct a ca-
nonical transformation of the 60 traits. This proce-
dure generates 60 transformed traits that are en-
vironmentally and genetically uncorrelated. However,
because the rank of G* is 6, only six canonical trans-
formations have any genetic variance. Therefore, the
60-trait analysis is replaced by six single-trait ana-
lyses on the transformed scale.

Gauss-Seidel iteration. Iteration consumes most
of the time that is required to calculate evaluations.
Gauss-Seidel iteration may converge more rapidly
than second-order Jacobi iteration but does require
that solutions from the appropriate iteration be used
when accumulating the right-hand sides. A linked list
can be used to collect the identification of mates as
described by Strandén and Mäntysaari (20). The ta-
ble that stores pedigree data is filled so that the
parent with the earlier birth date is in the first
column. By processing animal solutions in order of
animal number, contributions from mates with lower
numbers can be added to the accumulator immedi-
ately before the new solution is calculated by using
solutions from the current round instead of the previ-
ous round as happens in second-order Jacobi itera-
tion. This approach makes the use of Gauss-Seidel
iteration nearly as simple as the use of second-order
Jacobi iteration and may require fewer rounds of
iteration.

Use of 305-d records. To avoid selection bias and
to improve estimates of genetic trend, 305-d records
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for calvings before 1990 can be included. Those
records can contribute to estimation of missing TD
yields through correlations of 305-d yield with TD
effects. For calvings after 1990, TD data are incom-
plete for some herds; for herd TD for which >25% of
TD yields are missing, available TD information can
be supplemented with 305-d yields. A 305-d yield can
be expressed on a daily yield basis so that the contri-
bution from a 305-d record is similar in magnitude to
TD yield. The 305-d yields may need to be adjusted to
the same standard DIM as the TD yields to make
them comparable.

Reliability. The pattern of missing values and
correlations between traits should be reflected in the
reliabilities. For example, four tests in consecutive
stages provide less information than four tests that
are evenly spaced across lactation. Gengler and Misz-
tal ( 5 ) have proposed a method that has acceptable
accuracy if the proportion of missing records or the
correlation between traits is moderate. However,
their procedure may not be appropriate for this
60-trait design, which has over half of the traits
missing. Approximations that are suitable for this
data structure are needed, and methods for estimat-
ing reliability for multitrait analysis may be adapta-
ble (6) .

DISCUSSION

The proposed evaluation method based on TD data
has several beneficial features. A canonical transfor-
mation is used despite unequal design matrices
through a two-step solution strategy. This feature is
advantageous for genetic evaluation of dairy cattle
because the first analysis step can be computed with-
in the herd, which reduces the volume of data at the
second step (across herds) to a level comparable with
traditional analyses for lactation yields. Another use-
ful feature is that the htp effect includes all lactation
stages for a given TD and parity, which allows more
observations to contribute to estimation of this effect;
however, using the same htp definition does require
that adjustment for DIM be appropriate across lacta-
tion stages. Finally, when many traits are closely
related, use of a genetic (co)variance matrix of
reduced rank saves computational time.

Solutions from the TD model should be included in
an index to make maximum genetic progress. Solu-
tions for the two parity groups could be weighted by
the group frequencies in the population. Similarly,
evaluations by month in milk could be weighted
equally, or later months could be weighted more
heavily to select for persistency.

If genetic differences exist in the shape of lactation
curves or in maturity rate, this multitrait evaluation,
which includes separate traits for lactation stage and
parity, might result in more stable evaluations.
Correlations between traits are <1, which restricts
the degree that one stage or parity can influence the
genetic values for another and reduces the impact of
large amounts of data that are concentrated in early
stages or early parities. For example, if second crop
daughters of a bull tended to have high peak yields
during early lactation, their projected 305-d yields
would overestimate actual yield, and the bull evalua-
tion would be too high. With a multitrait model for
TD, the information from later stages of first crop
daughters would not be overwhelmed by the many
observations for the early stages of second crop
daughters; therefore, the evaluation would be more
stable.

CONCLUSIONS

A TD model is possible for the US dairy industry.
Evaluations from such a model are expected to be
more accurate because of better accounting for en-
vironmental effects. Those evaluations also should be
more stable because of accounting for genetic differ-
ences in maturity rate and persistency. The proposed
approach for implementation includes 305-d yields
(in addition to TD yields) to account appropriately
for genetic trend. A TD model is best able to accom-
modate the wide variation in milk recording that is
developing in an effort to reduce costs. All correla-
tions among milk, fat, and protein yields can be used.
Any number and distribution of TD within parity as
well as different frequencies of recording volume and
components can be accommodated. Correlations of <1
among TD and between parities allows appropriate
weighting of information.
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