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ABSTRACT

First-lactation test-day milk, fat, and protein yields
from New York, Wisconsin, and California herds from
1990 through 2000 were adjusted additively for age and
lactation stage. A random regression model with third-
order Legendre polynomials for permanent environ-
mental and genetic effects was used. The model in-
cluded a random effect with the same polynomial re-
gressions for 2 yr of calvings within herd (herd-time
effect) to provide herd-specific lactation curves that can
change every 2 yr. (Co)variance components were esti-
mated using expectation-maximization REML simulta-
neously with phenotypic variances that were modeled
using a structural variance model. Maximum heritabil-
ity for test-day milk yield was estimated to be ∼20%
around 200 to 250 d in milk; heritabilities were slightly
lower for test-day fat and protein yields. Herd-time ef-
fects explained 12 to 20% of phenotypic variance and
had the greatest impact at start of lactation. Variances
of test-day yields increased with time, subclass size, and
milking frequency. Test month had limited influence on
variance. Variance increased for cows in herds with low
and high milk yields and for early and late lactation
stages. Repeatabilities of variances observed for a given
class of herd, test-day, and milking frequency were 14
to 17% across nested variance subclasses based on lac-
tation stage.
(Key words: heterogeneity of variance, (co)variance
structure, test-day yield)

Abbreviation key: EM = expectation maximization.

INTRODUCTION

Although a common assumption of genetic evaluation
models is homogeneity of (co)variances, this assump-
tion is often incorrect across time or herds (Boldman
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and Freeman, 1990) and has the potential to bias rank-
ings of animals. Heterogeneity of (co)variance can be
addressed through adjustment of data either prior to
analysis (Wiggans and VanRaden, 1991) or as a part
of analysis (Meuwissen et al., 1996). In both cases, the
adjustment is generally done from the observed vari-
ance toward a population variance.

Structural variance models, in which observed heter-
ogeneity is modeled, are seldom used for yield traits
but have been used successfully for type traits (Weigel
and Lawlor, 1994). One important advantage of such
models, especially for research purposes, is that they
allow explanation of heterogeneity of observed vari-
ance, whereas current methods to account for heteroge-
neous variance of yield traits function much like a black
box: observed heterogeneous variance is adjusted with-
out explanation.

Research on 305-d lactation data (Brotherstone and
Hill, 1986) showed that the most important factor that
affected variance was yield level of the herd. A general
positive correlation of yield level with estimated genetic
and nongenetic variances was reported. With test-day
models, another reason for unequal variance was lacta-
tion stage (Vargas et al., 1998). Dodenhoff and Swalve
(1998) found that regional differences also affected yield
variance. The method proposed by Meuwissen et al.
(1996) to describe heterogeneity of variance accounts for
covariances among observations while jointly modeling
the mean and phenotypic variance of the input data.

The objective of this study was to document the exis-
tence and nature of unequal phenotypic variances by
modeling heterogeneity of variance through a struc-
tural variance model jointly with (co)variance estima-
tion for milk, fat, and protein yields.

MATERIALS and METHODS

Data

First-lactation test-day yields from New York, Wis-
consin, and California herds during 1990 through 2000
were adjusted additively for age and lactation stage
using adjustment factors of Bormann et al. (2002). Data
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Table 1. Characteristics of 3 random data sets used to model hetero-
geneity of variance for test-day yield.

Data set

Characteristic 1 2 3

Records, no. 73,456 72,582 76,641
Mean DIM 166.0 167.3 166.8
Mean test-day yield
Milk, kg 30.2 29.0 30.8
Fat, g 1090 1064 1114
Protein, g 893 857 913

were adjusted prior to analysis so that results would
be comparable with those from other studies that inves-
tigated methodology for calculating genetic evaluations
of US data based on a test-day model (Bormann et al.,
2002, 2003; Gengler and Wiggans, 2002; Wiggans et
al., 2002). Because the adjustment of data prior to anal-
ysis was additive, variance estimates should not be af-
fected. Herds were randomly assigned to three data sets
(Table 1). The data sets were similar for size (72,582 to
76,641 records) and mean test-day milk yield (29.0 to
30.8 kg).

(Co)variance Component Estimation Model

(Co)variance components were estimated with an ac-
celerated expectation-maximization (EM) REML algo-
rithm (Gengler et al., 1999) and the random regres-
sion model

y = Xt + Q(Hh + Z*a + Zp) + e,

which can be rewritten as

y = Xt + Qr + e

by setting

r = Hh + Z*a + Zp

and where y = vector of test-day records for milk, fat,
or protein yield; t = vector of fixed-class effects for herd,
test day, and milking frequency; h = vector of random
effects for 2-yr period within herd; p = vector of random
permanent environmental effects; a = vector of animal
effects (breeding values); e = residual effect; X = inci-
dence matrix that links y and t; r = vector of regres-
sions; Q = matrix of constant, linear, and quadratic
modified Legendre polynomials (Gengler et al., 1999):
I0 = 1, I1 = 30.5x, and I2 = (5/4)0.5(3x2 − 1), where x = −1
+ 2[(DIM − 1)/(365 − 1)], that link y and r; and H, Z,
and Z* are incidence matrices that link y with h, p, and
a, respectively. A herd-time effect (h) was introduced
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because a previous study (Gengler and Wiggans, 2001)
of the same data found that the portion of total variance
explained by such an effect was not negligible. Inclusion
of h provides herd-specific lactation curves that can
change every 2 yr.

Integrated Heterogeneous Variance Adjustment

Meuwissen et al. (1996) developed a method to allow
joint estimation of breeding values and heterogeneous
variances. The Meuwissen method is basically a multi-
plicative mixed model that scales milk production re-
cords toward a common phenotypic variance through
computation of a heterogeneity parameter at each itera-
tion. Adjustment factors are then obtained by modeling
those heterogeneity parameters and extracting an ex-
pected variance estimate. The Meuwissen method is
appealing because it accounts for (co)variances among
observations and heterogeneity can be modeled in a
flexible manner, e.g., through a structural variance
model. Pool and Meuwissen (2000) applied a slightly
modified version of the Meuwissen method in the esti-
mation of (co)variance components to correct for un-
equal variances caused by lactation stage. However,
their modification could be improved by using a struc-
tural variance model within the original Meuwissen
method to describe heterogeneity.

Unfortunately, the Meuwissen method scales all
fixed effects, including those that are not nested within
a correction subclass, which can be problematic. Based
on a suggestion by Pool and Meuwissen (2000), the
Meuwissen method was modified in this study by cor-
recting for fixed effects prior to every EM round. The
general model solved in EM round n + 1 can then be
written as

yn + 1
c = Xtn + 1 + Qrn + 1

c + en + 1
c ,

with the corrected data vector (yc) obtained from

yn + 1
c = Xt̂n + (Γn)−1(y − Xt̂n),

where Γ = diagonal matrix of scaling coefficients exp(γk/
2) for every subclass k that is considered homogeneous
for variances obtained from solutions of the model used
to describe heterogeneous variances and t̂ = estimated
t. As Xt̂n+1 approaches Xt̂n and Γn+1 approaches Γn, the
model can be rewritten as

yn + 1 = Xtn + 1 + Γn + 1(Qrn + 1
c + en + 1

c ),

which is a random regression model with scaled random
effects and a modified version of the Meuwissen model.
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Because the proposed strategy is unable to model
(co)variances among observations directly, phenotypic
covariance between 2 observations can only change
through changes in the associated phenotypic vari-
ances. Therefore, correlations between observations
were assumed to be unaffected as a result of adjustment
through the heterogeneous variance model.

Heterogeneity Parameter

A feature of the Meuwissen method is that the model-
ing of the heterogeneity parameter uses a weighted
mixed model and pseudovariates that were obtained by
summing current γk with the remaining heterogeneity
within variance subclass. Based on Meuwissen et al.
(1996), a heterogeneity parameter (z) for variance sub-
class k was developed:

zk = ({[yck
− Xkt̂k′êck

]/σ2
e} − nk)/2

where ê = estimated e, s2
e = residual variance, and nk =

number of records in variance subclass k. This formula
is conceptually similar to a quadratic form but for a
log-normal distribution. The variance associated with
this heterogeneity parameter was estimated as

Var(zk) = ([(Qkr̂ck
)′Qkr̂ck

/σ2
e] + 2nk)/4.

Variance subclasses were defined optimally as the por-
tion of the records in a given herd, test day, and milking
frequency class that were as homogeneous as possible
for lactation stage but still with a specified number of
records. Therefore, herd, test-day, and milking fre-
quency classes were subdivided according to DIM (6 to
65, 66 to 125, …, 306 to 365) into 60-d heterogeneity sub-
classes.

Although equal weights were assumed for every test-
day record, the formulas can be easily modified. The
weighted mixed model on pseudovariates

diag(γk) + W−1z

was written as

(S′WS + Λ−1)β = S′W[diag(γk) + W−1z]

where β = solutions, S = design matrix linking pseudo-
variates and β, and W = diagonal matrix of iterative
weights with W = diag[Var(zk)] and Var(β) = Λ. In con-
trast to Meuwissen et al. (1996), γk were scaled toward
a common base:
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γk = Skβ − γbase

to correct variances toward this base.

Structural Variance Model

Meuwissen et al. (1996) used a multiplicative mixed
model with a fixed mean effect and an autoregressive
(co)variance structure among random effects. To allow
examination of the factors that influence heterogeneity,
a greater number of fixed effects were used in the vari-
ance model of heterogeneity subclasses: mean test-day
milk yield (26 groups: <13, 14 to 15, 16 to 17, 18, 19, …,
39, >39 kg); year-season of test [6-mo periods (January
through June, July through December) during 1990
through 2000]; test month (12 mo); milking frequency
(2 or ≥3 times per day); size (11 groups: 1, 2, …, 6, 7 to
8, 9 to 11, 12 to 15, 16 to 20, >20 animals); and mean
DIM (36 groups of 10 d starting at 6 DIM). Separate
year-season and month effects rather than a year-
month effect were included to allow modeling of sepa-
rate time and month trends.

In addition to those fixed effects, a random effect for
herd, test day, and milking frequency was fitted in the
structural variance model but without the autoregres-
sive structure of Meuwissen et al. (1996). Their autore-
gressive structure is an indirect approximation to
model similarities across time, and those similarities
were modeled through fixed effects for this study. In
contrast to the model in this study for estimating (co)-
variance components, which included both fixed and
random herd-time effects, the structural variance
model included only a random herd-time effect so that
the observed variance could be regressed toward the
estimated variance. The structural variance model also
allowed heterogeneity of variances to be explained as
well as to be modeled. In addition, different fixed and
random effects easily can be fitted to this model to ac-
commodate future research findings (e.g., modification
to account for regional differences).

Estimation of repeatabilities of random effects is re-
quired to solve the variance mixed model. Instead of
the REML procedure used by Meuwissen et al. (1996),
Method R (Reverter et al., 1994) and the accelerator
described by Druet et al. (2001) were used to estimate
repeatabilities, because Method R could be integrated
easily into a procedure for model solution and (co)vari-
ance component estimation.

Solution and Estimation

Solutions of the heterogeneous variance model and
estimates of (co)variance components were obtained it-
eratively. After one round of EM REML, diag(γk) +
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W−1z was computed using the current solution. Then,
β was computed from 2 Method R subsamples and the
complete data sets, and Λ was updated until conver-
gence of Λ was reached based on Method R regressions.
Final β was computed from the complete data set; then,
Γ was computed, and data in y were adjusted to yc.
Those steps were repeated from the initial round of EM
REML until convergence of (co)variance components
was attained.

RESULTS AND DISCUSSION

Heterogeneity of phenotypic variance across DIM
was found for milk, fat, and protein test-day yields dur-
ing first lactation (Figure 1). Numerous previous stud-
ies (e.g., Vargas et al., 1998) have shown such heteroge-
neity over lactation stages. For all 3 yield traits, pheno-
typic variance was highest at start and end of lactation.
Although records from cows with >335 DIM or from
cows culled early in lactation could have influenced
results, similar patterns were found in studies that
used random regression models and Legendre polyno-
mials (Pool et al., 2000; Mayeres, 2002), which did not
use test-day yields recorded after 335 DIM.

Relative variances of model effects during first lacta-
tion were compared with total variance for milk, fat,
and protein test-day yields (Figure 2) to assess which
effects had the greatest impact on observed variation
in phenotypic variance. For milk, fat, and protein, ob-
served patterns were similar for all effects with some
distribution differences for nongenetic variance.

Heritability estimates (Figure 2) were highest (12 to
22%) for test-day milk yields and lowest (8 to 17%) for
test-day protein yields. Heritabilities for test-day milk
yield generally were lower than those from a previous
study with the same data grouped by annual milk yield
of herd (Gengler and Wiggans, 2001). Data were not
grouped by herd yield in the present study because
the objective was to model that effect directly in the
variance function. Maximum heritability for test-day
milk yield was estimated to be ∼20% around 200 to
250 DIM, which is low compared with estimates in the
literature (Pool et al., 2000). Some previous studies
(Lidauer and Mäntysaari, 1999; Gengler and Wiggans,
2001) showed that the introduction of random herd ef-
fects, such as done in this study, results in lower herita-
bility estimates, primarily because of a reduction in
unlikely genetic variance at start and end of lactation.
Lower heritabilities may also be linked to data adjust-
ment prior to analysis, which might have reduced addi-
tive variance.

Herd-time effects explained some phenotypic vari-
ance (12 to 20%), especially at the start of lactation.
Residual variances were kept constant over the entire
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Figure 1. Mean phenotypic variance (—) plus (+ +) and minus
(−−−) one standard deviation for test-day yield during first lactation
by DIM for a) milk, b) fat, and c) protein.

lactation rather than allowed to be proportional to the
mean. Therefore, changes in residual relative variance
reflect changes in total variance. The sum of all nonge-
netic random effects represented by 1 − heritability
was relatively stable with only limited increases of its
relative importance at start and end of lactation. All
partitioning of environmental (co)variance components
is basically arbitrary, because equivalent models can
be developed that redirect some of those (co)variances
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Figure 2. Heritability (�) and relative variances for herd-time
(◆), permanent environmental (�), and residual (�) effects for test-
day yield during first lactation by DIM for a) milk, b) fat, and c)
protein.

toward a more complicated residual (co)variance
structure.

Genetic and Phenotypic Correlations

Mean genetic (Table 2, above diagonal) and pheno-
typic (Table 3, above diagonal) correlations between
test days at various DIM were calculated based on esti-
mated (co)variances for milk, fat, and protein test-day
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yields from the 3 data sets. For all 3 yield traits, genetic
effects for test-day yields at midlactation (165 DIM)
had correlations of >0.50 with test-day yields at start
and end of 365-d lactations. Test days at lactation start
and end were less correlated with each other; however,
their genetic correlations were >0.35, which seemed
reasonable compared with results from the literature
for multitrait models (Vargas et al., 1998). Few studies
included data through 365 DIM; therefore, comparison
should be based on correlations for 305 DIM. Correla-
tions from this study were clearly higher than some
results obtained with random regression models (Gen-
gler et al., 1999) but were similar to estimates obtained
with multitrait models (Vargas et al., 1998).

Phenotypic correlations (Table 3, above diagonal)
showed a pattern similar to that for genetic correlations
for all 3 yield traits, with correlations of ≥0.80 for test-
day yield at 165 DIM with other midlactation test days
(65 to 285 DIM). Between test-day yields at start and
end of lactation, correlations were >0.22. Correlations
between test days at start of lactation and test days
closer to 305 DIM were >0.25, which were still lower
than correlations from multitrait models (Vargas et
al., 1998).

A fundamental difference between random regres-
sion and multitrait models is that the latter concen-
trates nongenetic (co)variance in an unstructured resid-
ual (co)variance matrix. As shown by several research-
ers (Tijani et al., 1999), progressing from multitrait
residuals to a nongenetic (co)variance structure in ran-
dom regression models is not straightforward. The in-
clusion of additional nongenetic random effects in ran-
dom regression models as pioneered by Lidauer and
Mäntysaari (1999), proposed by Gengler and Wiggans
(2001), and done in this study provides a more complete
description of this nongenetic structure.

Variability of estimated parameters was indicated by
observed standard deviations of the genetic correlations
for the 3 samples (Tables 2 and 3, below diagonal).

Structural Variance Model Solutions

Solutions for fixed effects of the variance model were
expressed as the logarithm of variance, which can be
transformed into multiplicative scaling effects that are
computed as exp(−solution/2). Log variances for mean
test-day yield were 0.25 ± 0.05 for milk, 0.26 ± 0.02 for
fat, and 0.19 ± 0.04 for protein. Variance increased for
all 3 yield traits over time (Figure 3) except from 1992
through 1994. Because herd yield and size are not ex-
pected to be confounded and because they were modeled
as other effects in the variance model, this trend should
not be an artifact of increased yield or herd size over
time.
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Table 2. Genetic correlations between test-day yields at various DIM (above diagonal) and standard devia-
tions of those correlations (below diagonal) for milk, fat, and protein.

DIM
Yield
trait DIM 5 25 45 65 85 125 165 205 245 285 325 365

Milk 5 0.98 0.92 0.85 0.79 0.68 0.61 0.57 0.54 0.52 0.48 0.41
25 0.008 0.98 0.94 0.90 0.82 0.76 0.72 0.68 0.64 0.56 0.45
45 0.026 0.006 0.99 0.96 0.91 0.86 0.82 0.78 0.72 0.62 0.46
65 0.048 0.020 0.004 0.99 0.96 0.92 0.89 0.85 0.78 0.66 0.47
85 0.068 0.036 0.013 0.002 0.99 0.96 0.93 0.89 0.82 0.68 0.48

125 0.093 0.058 0.029 0.012 0.004 0.99 0.97 0.94 0.86 0.72 0.51
165 0.093 0.062 0.034 0.016 0.006 0.001 0.99 0.97 0.90 0.77 0.56
205 0.078 0.051 0.026 0.012 0.006 0.003 0.001 0.99 0.94 0.83 0.63
245 0.046 0.023 0.008 0.011 0.014 0.010 0.005 0.002 0.98 0.90 0.73
285 0.029 0.024 0.032 0.035 0.033 0.024 0.016 0.009 0.003 0.97 0.85
325 0.090 0.084 0.079 0.070 0.061 0.045 0.035 0.026 0.016 0.005 0.96
365 0.160 0.146 0.127 0.108 0.092 0.070 0.057 0.047 0.034 0.018 0.004

Fat 5 0.98 0.93 0.86 0.79 0.66 0.56 0.51 0.49 0.48 0.48 0.47
25 0.006 0.98 0.94 0.89 0.79 0.71 0.65 0.62 0.60 0.57 0.51
45 0.016 0.002 0.99 0.96 0.88 0.82 0.77 0.73 0.70 0.64 0.54
65 0.019 0.003 0.001 0.99 0.94 0.89 0.85 0.82 0.77 0.69 0.56
85 0.015 0.006 0.007 0.002 0.98 0.95 0.91 0.87 0.82 0.72 0.58

125 0.018 0.032 0.030 0.019 0.008 0.99 0.97 0.94 0.88 0.77 0.60
165 0.039 0.054 0.051 0.037 0.021 0.003 0.99 0.97 0.92 0.81 0.64
205 0.045 0.061 0.058 0.044 0.027 0.007 0.001 0.99 0.95 0.86 0.70
245 0.035 0.051 0.049 0.037 0.023 0.006 0.002 0.001 0.98 0.92 0.78
285 0.021 0.027 0.026 0.018 0.012 0.011 0.010 0.006 0.003 0.97 0.88
325 0.044 0.035 0.035 0.038 0.041 0.040 0.034 0.026 0.017 0.007 0.97
365 0.091 0.094 0.099 0.103 0.103 0.093 0.080 0.068 0.054 0.034 0.011

Protein 5 0.97 0.91 0.83 0.76 0.64 0.57 0.53 0.50 0.47 0.43 0.36
25 0.005 0.98 0.94 0.89 0.80 0.74 0.69 0.66 0.60 0.52 0.40
45 0.019 0.005 0.99 0.96 0.90 0.85 0.81 0.77 0.70 0.58 0.41
65 0.036 0.016 0.003 0.99 0.96 0.92 0.89 0.84 0.76 0.62 0.42
85 0.052 0.028 0.010 0.002 0.99 0.96 0.93 0.88 0.80 0.65 0.43

125 0.069 0.043 0.020 0.007 0.002 0.99 0.97 0.93 0.85 0.69 0.46
165 0.069 0.044 0.022 0.008 0.002 0.001 0.99 0.96 0.89 0.74 0.52
205 0.055 0.034 0.015 0.005 0.004 0.003 0.001 0.99 0.94 0.81 0.60
245 0.029 0.016 0.011 0.013 0.013 0.009 0.005 0.002 0.98 0.89 0.72
285 0.023 0.026 0.029 0.028 0.025 0.020 0.016 0.010 0.004 0.96 0.84
325 0.066 0.058 0.049 0.040 0.034 0.031 0.031 0.025 0.015 0.004 0.96
365 0.110 0.090 0.067 0.046 0.033 0.030 0.034 0.032 0.023 0.012 0.004

Month of test had limited influence (Figure 4). Differ-
ences that might have originated from seasonal yield
changes appeared to have been corrected by simultane-
ous fitting of other effects. Variances increased with
subclass size as expected (Figure 5).

For all 3 traits, variance increased as mean milk
yield of the heterogeneity subclass increased from 23 kg
(Figure 6), which was expected because the literature
reports a moderate correlation of variance to herd mean
(Meinert et al., 1988). An even greater increase in vari-
ance was observed as mean subclass yield fell below 23
kg. However, this increase was unexpected based on
the literature. The increased variability for high- and
low-yield herds probably is not an artifact from the use
of polynomials because an effect for DIM was included
in the structural variance model.

Variances as a function of lactation stage (Figure 7)
tended to be higher during late and especially during
early lactation. Some of that pattern may be caused by
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the use of polynomials even if the method used should
normally describe only variance that is not explained
by the random regression model.

Variances increased with milking frequency (Table
4). No confounding between milking frequency and pro-
duction level should occur because those effects are esti-
mated jointly. Repeatabilities of variances for a given
herd, test day, and milking frequency were 0.14 ± 0.02
for milk, 0.17 ± 0.02 for fat, and 0.14 ± 0.01 for protein,
across nested variance subclasses based on lactation
stage.

CONCLUSIONS

A method to model and to estimate (co)variances and
variance heterogeneity jointly in test-day models was
developed. Variances increased with time, subclass
size, and milking frequency. Test month had extremely
limited influence. As expected, test-day yield for herds
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Table 3. Phenotypic correlations between test-day yields at various DIM (above diagonal) and standard
deviations of those correlations (below diagonal) for milk, fat, and protein.

DIM
Yield
trait DIM 5 25 45 65 85 125 165 205 245 285 325 365

Milk 5 0.98 0.93 0.86 0.78 0.63 0.51 0.44 0.39 0.35 0.31 0.28
25 0.005 0.98 0.94 0.88 0.76 0.65 0.57 0.51 0.44 0.35 0.26
45 0.018 0.004 0.99 0.95 0.86 0.77 0.70 0.62 0.51 0.38 0.25
65 0.030 0.011 0.002 0.99 0.93 0.86 0.79 0.70 0.58 0.41 0.24
85 0.038 0.016 0.006 0.001 0.97 0.92 0.86 0.77 0.63 0.44 0.25

125 0.041 0.025 0.018 0.012 0.006 0.98 0.94 0.86 0.72 0.51 0.28
165 0.042 0.035 0.033 0.026 0.017 0.004 0.98 0.93 0.80 0.59 0.36
205 0.039 0.039 0.040 0.035 0.026 0.010 0.002 0.98 0.88 0.70 0.48
245 0.028 0.031 0.036 0.035 0.029 0.015 0.006 0.001 0.96 0.84 0.65
285 0.013 0.009 0.018 0.020 0.018 0.011 0.004 0.002 0.002 0.95 0.83
325 0.032 0.025 0.020 0.017 0.016 0.015 0.018 0.022 0.019 0.008 0.96
365 0.061 0.062 0.062 0.060 0.058 0.053 0.053 0.055 0.050 0.032 0.009

Fat 5 0.98 0.92 0.83 0.73 0.55 0.42 0.36 0.33 0.33 0.34 0.34
25 0.001 0.98 0.92 0.85 0.70 0.59 0.52 0.47 0.44 0.39 0.33
45 0.005 0.002 0.98 0.94 0.83 0.73 0.66 0.60 0.53 0.43 0.32
65 0.011 0.007 0.002 0.99 0.92 0.84 0.78 0.71 0.61 0.47 0.31
85 0.022 0.017 0.009 0.002 0.97 0.92 0.86 0.79 0.67 0.50 0.30

125 0.046 0.040 0.028 0.015 0.006 0.99 0.95 0.88 0.75 0.55 0.31
165 0.059 0.055 0.042 0.026 0.013 0.002 0.99 0.94 0.82 0.62 0.37
205 0.061 0.057 0.044 0.029 0.016 0.003 0.001 0.98 0.89 0.71 0.48
245 0.051 0.047 0.035 0.022 0.011 0.005 0.004 0.001 0.96 0.84 0.64
285 0.029 0.025 0.017 0.010 0.009 0.010 0.007 0.004 0.002 0.95 0.82
325 0.014 0.013 0.014 0.016 0.017 0.016 0.016 0.017 0.014 0.005 0.96
365 0.036 0.035 0.033 0.030 0.027 0.026 0.031 0.035 0.033 0.021 0.006

Protein 5 0.98 0.91 0.82 0.73 0.55 0.43 0.36 0.31 0.28 0.25 0.23
25 0.004 0.98 0.92 0.85 0.71 0.60 0.52 0.46 0.39 0.31 0.23
45 0.015 0.004 0.98 0.94 0.84 0.75 0.67 0.59 0.49 0.36 0.22
65 0.029 0.013 0.003 0.99 0.92 0.85 0.78 0.70 0.58 0.41 0.23
85 0.041 0.023 0.009 0.002 0.97 0.92 0.86 0.77 0.64 0.44 0.23

125 0.057 0.037 0.020 0.009 0.003 0.99 0.95 0.87 0.73 0.52 0.28
165 0.060 0.041 0.024 0.013 0.006 0.001 0.99 0.93 0.81 0.60 0.36
205 0.053 0.036 0.021 0.012 0.007 0.004 0.001 0.98 0.89 0.71 0.48
245 0.038 0.023 0.012 0.009 0.009 0.007 0.003 0.000 0.96 0.84 0.64
285 0.017 0.006 0.004 0.009 0.010 0.007 0.006 0.006 0.003 0.95 0.82
325 0.019 0.019 0.020 0.020 0.020 0.023 0.026 0.026 0.020 0.008 0.96
365 0.039 0.038 0.038 0.039 0.042 0.048 0.053 0.055 0.047 0.028 0.007

Figure 3. Variance model solutions for effect of year and season
(1 = January to June; 2 = July to December) of heterogeneity subclass
for test-day milk (�), fat (�), and protein (�) yield.
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Figure 4. Variance model solutions for effect of test month of
heterogeneity subclass for test-day milk (�), fat (�), and protein
(�) yield.
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Figure 5. Variance model solutions for effect of size of heterogene-
ity subclass for test-day milk (�), fat (�), and protein (�) yield.

Figure 6. Variance model solutions for effect of mean milk yield
of heterogeneity subclass for test-day milk (�), fat (�), and protein
(�) yield.

Figure 7. Variance model solutions for effect of DIM of heterogene-
ity subclass for test-day milk (�), fat (�), and protein (�) yield.
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Table 4. Variance model solutions for effect of milking frequency by
yield trait.

Log variance
Milking
frequency Milk Fat Protein

2 times/d −0.10 −0.13 −0.09
≥3 times/d 0.20 0.27 0.19

with high milk yield had increased variance, but, unex-
pectedly, herds with low milk yield also had increased
variance. The increased variance for low-yield herds
could have resulted from sick animals or from identifi-
cation or data-recording errors, but those causes could
not be verified. Test-day yields during late and espe-
cially during early lactation also were more variable.
Repeatabilities of variances for a given class of herd,
test day, and milking frequency were 14 to 17%, which
indicated that a moderate degree of information came
from directly observed variance.

Jointly estimated (co)variance components followed
the patterns reported in earlier studies (Gengler and
Wiggans, 2001). Future studies should account for heri-
tability differences that are associated with herd yield
level. Herd-time effects explained some phenotypic
variance, especially at start of lactation.

The method developed to model and to adjust pheno-
typic variance can also be useful for routine genetic
evaluation. However, heterogeneity of (co)variance
components, which has been reported by earlier studies
of the same data (Gengler and Wiggans, 2001), cannot
be corrected through such a method. Further research
may overcome this limitation.
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