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ABSTRACT

The primary objective of this research was to deter-
mine if, with appropriate methodology, unbiased esti-
mates of days dry (DD) effects on subsequent lactation
milk yield can be obtained from field data, particularly
when DD is correlated with cow effects. Another objec-
tive was to ascertain relevant sampling properties of
designed trials for estimation of DD effects. Simulated
records were used to assess methodology. Along with a
model with no adjustments for cow effects, alternative
models including 1) previous lactation milk yield, 2)
a prior adjustment for cow effects estimated from an
animal model, and 3) a combination of 1 and 2, were
tested.

Estimates from the unadjusted model were biased
downward; however, the 3 alternative analyses pro-
vided estimates of DD effects that were essentially un-
biased, with a prior adjustment for cow effects and pre-
vious milk yield in the model providing the best results
in terms of elimination of bias. Therefore, DD effects
can be estimated from field data without bias from
cow effects.

A designed trial with 2 groups and 10 or fewer cows/
group is noninformative and has an unacceptably high
probability of leading to invalid conclusions. A mini-
mum of 30 cows/group is considerably better and should
be used whenever possible. Even with 30 cows/group,
however, the power is low unless the difference between
DD groups for yield is at least 1130 kg. Prior correction
of 305-d, mature equivalent records for cow effects, us-
ing predicted producing abilities, could be done in de-
signed trials to improve the statistical power of tests
and accuracy of estimates.
(Key words: days dry, methodology, simulation)

Abbreviation key: DD = days dry, PE = permanent
environmental, PrevM = previous lactation milk yield.
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INTRODUCTION

Optimum length of dry period has recently become a
topic of considerable interest as evidenced by numerous
popular press articles (Annen et al., 2003; Rastani and
Grummer, 2003; Bachman, 2004; Grummer, 2004). Al-
though considerable research has supported the conclu-
sion that 60 days dry (DD) maximizes production in
the subsequent lactation (Grummer and Rastani,
2004), renewed interest in this topic has stimulated
new research. Re-exploring the topic of DD is probably
justified because much of the currently available re-
search is at least 20 yr old and cows and management
practices have changed considerably over the last 20
yr. Mean breeding value for lactational milk yield in
US Holsteins, for example, has increased 2050 kg since
1982 (Animal Improvement Programs Laboratory,
2004). Higher potential for milk yield may mean that
cows are able to sustain production for a longer period
of time, which may make shorter dry periods more
practical.

Although both designed trials and observational
studies have been done in the past, much of the research
on DD has been done using field data. However, the
validity of using field data to determine DD effects has
been recently questioned (Bachman and Schairer, 2003;
Grummer and Rastani, 2004). Bachman and Schairer
(2003) seemed to imply that only designed trials could
be used to assess the impact of dry period length on
performance. Their final conclusion, for example, was:
“Importantly, additional animal trials that assign cows
randomly to the dry period lengths that are being evalu-
ated are needed to determine the optimal dry period
length for the modern dairy cow in various management
scenarios.” The idea that studies based on field data
are “biased” and basically noninformative has been
promulgated in the popular press literature as well
(e.g., Linderoth, 2003; Rastani and Grummer, 2003;
Mohr, 2004). This criticism is unfortunate because it
could potentially (and erroneously) erode producer con-
fidence in results based on their data.

Certainly, some difficulties can be associated with
the use of field data, but there are problems with de-
signed trials as well and, more importantly, there are
pronounced advantages of observational studies over
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designed trials. One primary advantage of observa-
tional studies, (beyond sample size) is that they have
the potential to provide much more information than
can be gleaned even from numerous designed trials.
For example, one can feasibly determine the effects of
DD on herd life or lifetime production in observational
studies and examine interactions with other factors
such as parity and previous lactation variables such
as milk yield (PrevM), days open, or SCS. This more
complete information is crucial in making appropriate
recommendations for dry period length. However, few
if any designed trials have done so, almost certainly
because the expense, time, and effort involved would
be prohibitive. The contention that field data cannot be
used to determine DD effects should be examined so
that this unparalleled source of information could be
used to assist in the development of appropriate man-
agement recommendations and to lend guidance to fur-
ther research.

The main argument put forth by Bachman and
Schairer (2003), which was repeated several times in
different ways throughout the paper, was that, in prac-
tice, higher producing cows tend to get shortened dry
periods more frequently than do lower producing cows,
which means that estimates of DD effects based on field
data, at least for production, are biased by cow effects.
The primary objective of this research was to determine
if by using appropriate methodology, unbiased esti-
mates of DD effects could be obtained from field data,
even when higher producing cows receive shorter dry
periods more frequently than do lower producing cows.
Another objective was to ascertain relevant sampling
properties of designed trials for estimation of DD
effects.

MATERIALS AND METHODS

General Approach

The question of potential bias caused by cow effects
is a mathematical question, not a biological question.
Such questions can be answered effectively and un-
equivocally using simulation. The general approach is
straightforward. Records are simulated so that the true
DD effects are known, the aspect of interest is intro-
duced into the data, estimates are computed using
stated methodology, and then the estimated effects are
compared with the true values to see whether they
agree. This was the overall approach used in this study
and is illustrated in Figure 1.

Simulation of Observational Data

In practice, as well as in this simulation, DD is related
to both PrevM and milk yield in the subsequent lacta-
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tion, but in different ways. Milk yield in the lactation
before the dry period partly determines the length of
the dry period, but then the dry period length, in turn,
has an effect on the subsequent lactation yield. In the
following discussion, the generalities for simulation of
records will be described first, and then the manner in
which DD were simulated will be discussed. The DD
effects added to simulated records will be described in
more detail after simulation of DD is discussed.

Model for simulation of records. To address the
simple question of whether partial confounding of cow
effects with DD biases estimates of DD effects, the simu-
lation need not be complicated. It is adequate to simu-
late only the basic aspects of the data, relevant to the
question of interest. First-lactation milk records (y)
were simulated according to the equation:

y = µM + A + PE + Parity + e [1.1]

and second and later lactations according to the
equation:

y = µM + A + PE + Parity + DDeffect + e, [1.2]

where µM was an overall mean, A was an additive ge-
netic effect, PE a permanent environmental (PE) effect,
Parity was a parity 1 vs. second and later effect, DDef-
fect was the effect of DD, and e was a temporary envi-
ronmental (or error) effect. Parameters used for simula-
tion are summarized in Table 1. Breeding values for
base generation animals were generated as normal ran-
dom variables with mean zero. Thereafter, breeding
values were generated as parent average breeding
value plus a normally distributed Mendelian sampling
effect. Permanent environmental effects and errors
were also generated as normal random variables with
mean zero. Standard deviations for A, PE, and e for
simulated milk records (Table 1) were comparable to
those of Kuhn et al. (2005) for kilograms of lactation
milk yield.

Simulation of DD and its Correlation with PrevM

Dry period length was correlated with PrevM by first
generating a continuous DD according to the equation:

DD = µDD + βM × (PrevM − µMi) + eDD, [2]

where µDD was an overall mean DD, βM was a linear
regression of DD on the cow’s milk yield deviation from
the population mean in the ith yr (µMi), and eDD was a
random normal error, independent of milk yield. The
overall standard deviation of 15 d for simulated DD
was similar to that of Kuhn et al. (2005). The −0.2
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Figure 1. General approach for determining bias in estimates of days dry (DD) effects using field data.

correlation between simulated DD and PrevM used in
this simulation (Table 1) was higher than the −0.15
correlation reported by Kuhn et al. (2005) to ensure an
adequate test of methodology. If the stronger relation-
ship can be handled, then certainly the weaker one can
be as well.

Once DD was calculated from equation [2], it was
then categorized as indicated in Table 2, and the corres-

Table 1. Summary of population parameters and characteristics for simulation of observational data.

Parameter1 Value Population characteristic2 Value(s)

Mean milk (µM) 9100 Number of cows/yr 100,000
Standard deviation of breeding values 750 Number of cows replaced each year 40,000
Standard deviation of permanent environmental effects 750 Number of yr (including base) 11
Standard deviation of errors for milk yield 1100 Total number of cows 500,000
Parity 1 effect −500 Total number of records 1,100,000
Parity 2 effect 500 Total number of second lactation records 308,000
Mean DD (µDD) 60 Number of sires/yr 1000
Regression of DD on milk (βM) −0.002 Number of sires replaced each year 200
Correlation of DD and previous lactation milk yield −0.2 Total number of sires 2800
Standard deviation of errors for DD (eDD) 14.7 Culling rates by parity 0.3, 0.4, 0.4, 0.5, 1
Standard deviation of DD 15 Culling rates by milk yield group3 0.5, 0.3, 0.2
Number of replicates 50

1DD = Days dry.
2For each replicate.
3Low, medium, and high groups, respectively; groups were of equal size.
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ponding DD effect, also listed in Table 2, was added to
the subsequent lactation milk record in the next year,
as indicated in equation [1.2]. The objective of this part
of the research was simply to determine if DD effects
can be estimated without bias when DD is correlated
with PrevM (i.e., cow effects). Thus, the exact magni-
tude used for the DD effects (Table 2) is largely irrele-
vant. Nonetheless, the effects used in this simulation
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Table 2. Days dry (DD) categories, effects, and expected frequencies
for simulation of observational data.

DD DD Expected
DD category effect frequency

<30 1 −2300 11,375
30 to 37 2 −2000 19,923
38 to 44 3 −1500 40,232
45 to 52 4 −1000 76,920
53 to 60 5 −500 101,550
61 to 67 6 0 89,815
68 to 75 7 0 80,857
76 to 82 8 0 43,711
83 to 90 9 0 24,242
>90 10 0 11,375
Total 500,000

(Table 2) are at least as large or larger than literature
estimates (e.g., Funk et al., 1987; Makuza and McDan-
iel, 1996), which ensures at least an adequate test of
methodology. Larger effects provide a more stringent
test of methodology. The simulated DD effects (Table
2) for the last 4 categories were set to zero to simulate no
effect of DD after the minimum dry period to maximize
production is met.

Structure of simulated populations. Population
characteristics are summarized in Table 1. One hun-
dred thousand cows were generated in the base year.
The simulation was run for 10 yr thereafter, with the
100,000-cow population being maintained each year. A
replacement rate of 40,000 cows/yr resulted in 500,000
total cows [10 × (40,000) + 100,000 base cows] for each
replicate. Lactation percentages for base cows were 40,
28, 17, 10, and 5 for lactations 1 through 5, respectively.
Culling rates (Table 1) differed by parity and depended
on level of milk yield. Dams of female replacements
were selected at random.

There were 1000 sires available each year with re-
placement of 200 sires/yr, which resulted in 2800 total
sires. For the sake of introducing some selection into
the simulation, the 200 bulls culled each year were
randomly selected from the bottom half of bulls based
on a simulated value computed as the sum of true breed-
ing value plus a normally distributed random error with
mean zero and standard deviation 335. Sires and dams
of new sires were randomly selected from the top half
of their respective populations and this selection was
based on a similar simulated value. Each sire and dam
was allowed to produce only one son/yr.

Estimation of DD Effects for Observational Data

DD as a covariate vs. categorical variable. In all
analyses tested in this study, DD effects were estimated
using a categorical variable for DD rather than regres-
sion. This approach has been common practice in the
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past with respect to DD (e.g., Keown and Everett, 1986;
Funk et al., 1987; Makuza and McDaniel, 1996) and
may be justified for a number of reasons. Most research
to date (Funk et al., 1987; Makuza and McDaniel, 1996)
indicates that production increases with increasing DD
up to a point, but after that point, additional DD add
nothing to subsequent lactation yield. This relationship
is somewhat difficult to model precisely with regression.
The relationship is certainly not linear. A quadratic
regression may be a sufficient approximation but, in
principle, a quadratic is necessarily parabolic and thus
would tend to “predict” a decrease in production after
the maximum point. A cubic regression would allow for
the flattening off after the maximum point but would
predict an increase in production with long DD. Fitting
DD as a covariate necessarily makes prior assumptions
about the nature of the relationship between DD and
milk yield and the purpose of the research should be
to discover the nature of the relationship. Fitting DD
as a covariate may conceal variation that would be un-
covered when DD is fit as a categorical variable.

Concerning potential bias in estimates of DD effects
using field data, it is clear that what needs to be cor-
rected for are the cow effects (breeding value and PE
effects). Thus, in addition to an analysis with no adjust-
ments, 3 alternative analyses, aimed at correcting for
cow effects, were tested.

Alternative I: PrevM. The first, and simplest, alter-
native was to include PrevM as a linear covariate in
the model for estimation of DD effects. The model equa-
tion for analysis under this alternative, was:

y = µ + β × PrevM + DDcatg + e, [3.1]

where y was a milk record and DDcatg was a categorical
variable for DD as defined in Table 2. Only second and
later lactations contributed to this analysis. This alter-
native is similar to the approach of Makuza and McDan-
iel (1996). Previous lactation yield has also been used
in some designed trials to correct for differences in cow
effects between groups (e.g., Gulay et al., 2003).

Alternative II: Prior correction for cow effects,
estimated from an animal model. Although the
properties of animal models fit using BLUP are well
established (Henderson, 1984), their use in DD research
presents a unique aspect. Preferably, DD would be kept
in the model for estimation of cow effects to ensure that
the DD effect is not partially partitioned into the animal
or PE effect. However, exclusion of first-lactation re-
cords can lead to bias in predicted breeding values (Pol-
lak and Quaas, 1981; Henderson, 1982). The dilemma,
then, is that first-lactation records cannot be excluded
but they also have no DD associated with them. This
difficulty was circumvented by assigning all first-lacta-
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tion records their own unique (dummy) DD category,
category 11. This method was similar to the approach
of Funk et al. (1987), although they did not use genetic
relationships for estimation of cow effects. This ap-
proach to estimating the cow effects was the reason for
inclusion of a parity effect in the simulation. Parity 1
and DD category 11 were completely confounded and
this aspect should be tested because it would occur
when working with field data.

In practice, it may be desirable to examine DD effects
on subsets of data, for example, by parity. Cow effects,
however, need to be estimated using all data simultane-
ously to maximize accuracy and to avoid biases. Both
of these goals can be met using a 3-step procedure for
estimation of DD effects: 1) estimate cow effects from
an animal model using all data, 2) preadjust the records
by subtracting the estimated cow effects, and 3) esti-
mate DD effects from the preadjusted records. This was
the procedure tested in this alternative. Cow effects
were estimated from the model:

y = µ + A + PE + Parity + DDcatg + e [3.2a]

where DDcatg was a categorical variable as defined in
Table 2, plus a category 11 for all first-lactation records.
The effects A, PE, and e were fit as random effects with
variance-covariance matrices: Var(A) = AσA

2, Var(PE) =
IσPE

2, and Var(e) = Iσe
2, where A was a relationship

matrix. Days dry effects were estimated from the model:

Adjusted-y = µ + DDcatg + e [3.2b]

where Adjusted-y is the record with solutions for breed-
ing value and PE from [3.2a] subtracted, and DDcatg
is as defined in Table 2. First-lactation records were
not included for analysis in [3.2b].

Alternative III: Combination of I and II. A third
alternative was to preadjust for cow effects as in alter-
native II but to include PrevM in the model for analysis,
i.e., in equation [3.2b]. Thus, alternative III was the
same as II except the model for estimation of DD ef-
fects was:

Adjusted-y = µ + β × PrevM + DDcatg + e. [3.3]

Evaluation of Models/Alternatives for Analysis
of Simulated Observational Data

As indicated in Figure 1, 50 replicates were run. In
each replicate, DD effects were estimated using each
of the 4 alternatives (no adjustment, plus alternatives
I to III). The primary objective was to determine
whether a given method was biased. To evaluate bias
for a given alternative, estimates across the 50 repli-
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cates were averaged for that alternative and simply
compared with the true DD effects to see if the estimates
differed from the true values.

The amount of variation (standard deviation) among
replicate estimates was also calculated for each method.
This reflects the precision or standard error (i.e., the
standard deviation of the sampling distribution) of
each approach.

Simulation of Designed Experiments

The second part of this research was to determine the
sampling properties of designed trials for estimation of
DD effects. Twenty, 40, and 60 cows were generated
and divided randomly and evenly between 2 DD groups.
Five levels of DD effect (difference between the 2
groups) were used: 225, 450, 680, 900, and 1130. Thus,
there were 3 (sample sizes) × 5 (DD effects) = 15 inde-
pendent experiments, each with 1000 independent rep-
licates.

Two records were simulated for each cow, according
to the equations:

y1 = µM + Cow + e

y2 = µM + Cow + DD_effect + e

where DD_effect was the DD effect for the given experi-
ment and Cow was a normally distributed cow effect
with mean zero and variance equal to the sum of the
variances for breeding value and PE used in the simula-
tion of observational data. Error variance was also the
same as that in Table 1. Relationships were not gener-
ated in this simulation because cows were assigned
randomly to DD groups and because an animal model
was not used for estimation. Two records were gener-
ated on each cow to be able to determine the usefulness
of including “previous lactation” yield in the model for
analysis. Two models were used for analysis in each rep-
licate:

y2 = µ + DD + e1

y2 = µ + DD + β∗y1 + e2.

Summary statistics for each of the 15 experiments
included percentage of replicates with significant differ-
ences at the level of 0.10, mean P values, the standard
deviation among replicate estimates, and a description
of the distribution of estimates. The difference between
groups in absolute cow effects was also summarized.
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Table 3. Mean estimates and bias across 50 replicates when cow effects were correlated with days dry
(DD).

Mean estimates across replicates1,2 Bias1,2

DD True No No
category effect adjustment I II III adjustment I II III

1 −2300 −1945 −2286 −2282 −2294 355 14 18 6
2 −2000 −1734 −1991 −1985 −1994 266 9 15 6
3 −1500 −1299 −1493 −1490 −1497 201 7 10 3
4 −1000 −864 −995 −993 −997 136 5 7 3
5 −500 −433 −498 −496 −499 67 2 4 1
6 0 0 0 0 0 0 0 0 0
7 0 −67 −2 −4 −1 −67 −2 −4 −1
8 0 −136 −4 −8 −3 −136 −4 −8 −3
9 0 −201 −2 −10 −2 −201 −2 −10 −2
10 0 −297 −4 −14 −4 −297 −4 −14 −4

1I = Alternative I for estimation, previous milk only included in model for estimation; II = alternative II
for estimation, prior correction for cow effects estimated from an animal model; III = alternative III for
estimation, prior correction for cow effects and previous milk included in model for estimation.

2Estimates expressed relative to category 6.

RESULTS

Simulation of Observational Studies:
Cow Effects Correlated with DD

Mean of estimates across replicates as well as bias
(mean estimated effect − true effect) are in Table 3.
Estimates were expressed relative to category 6; i.e.,
as DD categoryi − DD category6. Thus, the category 6
estimate, as well as its standard deviation, is necessar-
ily zero. Estimates are clearly biased downward with
no adjustment. As expected, when there is no adjust-
ment for cow effects, biases are positive for the shorter
dry periods simply because the cow effects associated
with shorter dry periods are positive and the converse
is true for longer dry periods for the same reason: poorer
cows received longer dry periods.

The estimates in Table 3 clearly show that the magni-
tude of the negative impact of shortened dry period is
underestimated when there is no correction for cow
effects. However, all alternative analyses provided esti-
mates of DD effects that were essentially unbiased.
Use of a prior adjustment for cow effects, along with
inclusion of PrevM in the model for estimation of DD
effects (alternative III), provided the best results in
terms of elimination of bias. However, it was only
slightly better than using PrevM alone. This result is
probably because with a large number of records, the
regression on PrevM is well estimated. The main point
of Table 3 is simply that DD effects can be estimated
from field data without bias from cow effects.

Standard deviations among estimates (Table 4) were
small for all analyses and there was surprisingly little
difference among them. Use of PrevM was as good as
adjustment for cow effects from an animal model. This,
too, probably reflects large sample size. If sample size
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for estimation of DD effects was small but sample size
for estimation of cow effects was large (e.g., if cow effects
in a designed trial were corrected for by using animal
model estimates from the national database), then prior
correction for cow effects would likely show an advan-
tage in standard error over the use of PrevM alone. An
analysis using only second-lactation records (number
of records per replicate = 308,000) was done and results
(not shown) were similar to those in Tables 3 and 4.

Simulation of Designed Trials

In contrast with the simulation of observational stud-
ies, the concern with designed studies is not “bias” per
se because cows are (presumably) assigned at random
to DD groups. Rather, due to sample sizes that are
generally small, the concern with designed experiments

Table 4. Standard deviations among estimates when cow effects were
correlated with days dry (DD).

Alternative1

DD No
Category adjustment I II III

1 14 12 13 13
2 10 9 9 9
3 8 7 6 6
4 6 6 6 5
5 6 6 5 5
6 0 0 0 0
7 7 6 6 6
8 7 6 6 6
9 10 9 9 9
10 19 16 15 15

1I = Alternative I for estimation, previous milk only included in
model for estimation; II = alternative II for estimation, prior correc-
tion for cow effects estimated from an animal model; III = alternative
III for estimation, prior correction for cow effects and previous milk
included in model for estimation.
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Table 5. Percentage of replicates with significant differences (P ≤
0.10) for designed trials.

Days dry effect

Cows/group1 225 450 680 900 1130

10: No PrevM 12 16 24 38 47
PrevM 12 19 28 41 54

20: No PrevM 15 25 39 58 72
PrevM 15 28 49 66 81

30: No PrevM 18 29 51 69 88
PrevM 19 35 61 80 93

1No PrevM = previous lactation milk yield not included in the model
for analysis; PrevM = previous lactation milk yield included in the
model for analysis.

is power or the ability to detect real differences given
that they exist.

The probabilities of detecting real differences, for dif-
ferent magnitudes of DD effects and the 3 different
sample sizes used in this simulation, are given in Table
5. If DD effects truly exist, it would be better to flip a
coin to decide whether dry period length affects milk
yield than to run an experiment with only 10 cows/
group in 2 groups. The 10-cow groups did not detect a
DD effect even 50% of the time until the magnitude of
the effect was 1130 kg, and even then only with the
enhanced analysis using PrevM. With a milk price of
$0.26/kg ($12.00/cwt), the 10-cow groups would fail to
detect an effect on subsequent lactation yield (1130 kg)
worth $294.00/cow per lactation, 46% of the time. The
lowest mean P value (Table 6) for the 10-cow groups
was only 0.19. With 20- and 30-cow groups, better re-
sults were obtained, as expected, but even with 30 cows/
group, DD effects were not detected more than 50% of
the time until the magnitude of the DD effect was at
least 680 kg. Mean P values dropped to about 0.20 for
both 20- and 30-cow groups when the DD effect reached
680 kg. However, 30-cow groups did not reach a mean

Table 6. Mean P values for a 2-tailed t-test from the simulation of
designed trials.

Days dry effect

Cows/group1 225 450 680 900 1130

10: No PrevM 0.47 0.44 0.37 0.30 0.24
PrevM 0.47 0.42 0.33 0.26 0.19

20: No PrevM 0.46 0.39 0.26 0.17 0.10
PrevM 0.45 0.36 0.21 0.13 0.07

30: No PrevM 0.43 0.33 0.20 0.11 0.04
PrevM 0.42 0.29 0.15 0.07 0.02

1No PrevM = previous lactation milk yield not included in the model
for analysis; PrevM = previous lactation milk yield included in the
model for analysis.
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Table 7. Standard deviation among estimates for simulation of de-
signed trials.1

Cows/group No PrevM PrevM

10 695 620
20 491 433
30 396 351

1No PrevM = previous lactation milk yield not included in the model
for analysis; PrevM = previous lactation milk yield included in the
model for analysis.

P value less than 0.10 until 900 kg, and 20-cow groups
not until 1130 kg.

The standard deviations among estimates, across
replicates, are in Table 7. Because these do not depend
on the magnitude of the DD effect, values presented in
Table 7 are averages across the DD effect categories.
Even though the regression of milk yield on PrevM may
not be well estimated with such small sample sizes,
clearly inclusion of PrevM is advantageous and should
be done in the analysis of data from designed trials.
Some researchers may argue that they have obtained
standard errors smaller than those indicated in Table
7. If that is the case, then a truly random sample from
the population to which inferences were to be made was
most likely not taken because the standard deviations
for animal, PE, and error used in this simulation were
realistic, at least for the US Holstein population.

The distribution of estimates, for the 680-kg DD ef-
fect, is shown in Table 8. For 10-cow groups, estimates
in the wrong direction were obtained 16% of the time.
For example, if the true effect of a 30-d dry period were
to cause a reduction (relative to 60 DD) of 680 kg in
the subsequent lactation, an experiment with only 10
cows/group would actually find a higher mean for cows
with 30 DD 16% of the time. Fortunately, this probabil-
ity is considerably lower for 20- and, especially, 30-cow
groups. For 30-cow groups, there was a 71% chance of

Table 8. Distribution of estimates for designed trials with a days
dry effect of 680: percentage of estimates in each range.1

Cows/group

Estimate range 10 20 30

<0 16 6 2
0 to 250 9 10 7
251 to 500 15 19 20
501 to 600 8 10 12
601 to 650 2 4 5
651 to 700 3 5 6
701 to 800 6 8 12
801 to 1000 9 15 19
1001 to 1200 10 12 10
1201 to 1500 11 8 6
>1500 11 3 1

1With previous lactation milk yield in the model for analysis.
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Table 9. Differences between days dry (DD) groups in mean cow
effects: percentage in each range.

Mean difference
between DD Cows/group
groups in absolute
cow effects 10 20 30

0 to 50 8 13 14
51 to 100 8 12 14
101 to 200 16 21 25
201 to 300 15 17 19
301 to 400 12 13 13
401 to 500 11 10 8
501 to 600 8 6 4
601 to 700 7 4 2
>700 15 4 1

obtaining an estimated difference between groups of at
least +500 kg when the true difference was 680 kg.
Perhaps most disappointing is the percentage of esti-
mates in the 500 to 800 kg range. Only 35% of the
estimates fell in this range, even for the 30-cow groups.
The 20-cow groups had 27% of their estimates in this
range and the 10-cow groups had only 19% in this range.

Bachman and Schairer (2003) argued that the advan-
tage of designed trials was that cows were randomly
assigned to groups and, indeed, truly random assign-
ment of cows to groups is desirable. However, random
assignment does not mean equal assignment, especially
when group sizes are small. This is illustrated in Table
9. Even with 30 cows/group, the mean difference in cow
effects between the 2 groups was less than 50 kg only
14% of the time. With only 10 cows/group, the mean
difference in cow effects was ≥300 kg 53% of the time.
Days dry groups differed in mean cow effects by ≥300
kg 37% of the time for 20-cow groups and 28% of the
time for 30-cow groups. Use of mature-equivalent re-
cords for estimation of DD effects (in contrast to use of
actual yields) may cloud differences in lactation yield
caused by DD. Nonetheless, they may still be the best
choice of production variable for designed studies be-
cause the predicted producing abilities, computed by
Animal Improvement Programs Laboratory and based
on a large national database, could be used to preadjust
the mature-equivalent records. This, in turn, would re-
duce differences between groups in cow effects and,
subsequently, increase power of tests and precision of
estimates.

DISCUSSION

In a recent review, Bachman and Schairer (2003)
criticized DD studies based on field data, with the over-
all conclusion being that only designed trials could be
used for determining the effect of DD on subsequent
lactation performance. Their main concern (that esti-
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mates from field data are biased by cow effects) was
addressed in this research. Ironically, advocates of a
shortened dry period seem to ignore the fact that such
a bias, if it existed, would favor shorter, not longer, DD
which is shown in Table 3. The arguments made by
Bachman and Schairer (2003) concerning cow effects
were not consistent throughout their paper. In criticiz-
ing a study by Klein and Woodward (1943) because
of lack of correction for year and season effects, they
categorize repeatability of milk yield as being “low.”
Low repeatability, however, implies that cow effects are
of minor importance and yet it was argued repeatedly
that cow effects are a major source of bias in studies
utilizing field data. In spite of the inconsistencies in
Bachman and Schairer’s (2003) discussion, cows with
higher producing abilities do tend to have shorter dry
periods more frequently than do cows with lower pro-
ducing abilities, as was clearly shown in a recent study
by Kuhn et al. (2005). However, this research demon-
strated that such effects could be readily accounted for
with a proper statistical analysis. Because the correla-
tion between DD and cow effects can be readily ac-
counted for in analysis of field data, these cow effects
certainly present no reason to abandon the use of field
data in helping to determine recommendations for ap-
propriate length of dry period.

Bachman and Schairer (2003) listed 15 factors affect-
ing milk yield and seemed to indicate that these factors
were not or could not be accounted for in the analysis
of field data. In fact, with the exception of bST usage,
virtually all of the factors (and certainly all of the major
factors) listed by Bachman and Schairer (2003) can be
readily accounted for in the analysis of field data and
perhaps better so than what can or has been done in
designed trials. Season of calving effects, for example,
would be estimated much more accurately with the
larger field data sets than with the smaller experimen-
tal data sets.

One last point of contention brought up by Bachman
and Schairer (2003), concerning the use of field data,
was quality of data. One argument was that, in field
data, “short dry-period categories are composed primar-
ily of a nonrandom population of cows that freshened
earlier than expected for various reasons.” Ignoring the
fact that they also argued that high-producing cows
were the ones with short DD, this concern can be easily
dealt with using an edit, as can abortions, which were
pointed to as another possible source of corruption in
field data.

The topic of “planned vs. unplanned shortened dry
period” is rather questionable. First, this argument is
largely speculative; it is by no means well documented
that most short dry periods occurring in practice are
“unplanned.” Furthermore, from a certain perspective,



METHODS FOR ESTIMATING DAYS DRY EFFECTS 1507

it does not matter why a cow was dried off or how the
cow was managed, only how long the dry period was.
The “planned vs. unplanned” mantra necessarily im-
plies that 1) shortened dry periods do cause a loss in
subsequent lactation milk yield and 2) that there are
(special?) management practices that can offset this
loss, either partially or completely. The viewpoint taken
in making this argument, then, is that the only correct
comparison to make is the one where these manage-
ment practices are used. It would be useful if these
management practices were clearly specified. One could
then evaluate whether such practices are likely to be
implemented in practice and, subsequently, what
should be estimated: the effect of DD with or without
this management. The “unplanned” dry periods can be
readily identified with an edit if one desires to use
“planned” dry periods for comparison. Both days open
and calving dates are reported to DHI. For a given cow,
the reported days open from the previous lactation can
be compared with the calving date in the next lactation.
If they match (say, within 10 d), that would suggest
that the producer knew (or should have known) when
the cow was going to calve because it was, in effect,
reported to DHI; if they do not match, then the record
can be excluded. If a given herd has many records that
do not match, the whole herd can be deleted. Further-
more, if the field data indicate that shorter DD are
associated with decreases in yield, and management
practices do exist that can offset these losses, then the
conclusion is either that 1) farmers do not know about
these management practices, or 2) they are not feasible
for implementation. Such a result, in turn, would sug-
gest that these practices (which putatively offset the
losses) need to be better publicized or need to be re-
worked because the farmer cannot implement them in
a cost-effective way.

In spite of an overstated criticism of the use of field
data for determining the effects of DD on performance,
Bachman and Schairer (2003) are correct in their over-
all implication that well-designed experiments, fol-
lowed up by appropriate statistical analysis, have cer-
tain potential advantages over the use of field data. The
converse, however, is also very much true. A major
limitation of designed experiments will almost invari-
ably be sample size and the ensuing lack of statistical
power (ability) to detect real differences, which was
clearly demonstrated in Tables 5 through 9 of this pa-
per. Another concern related to small sample sizes is
scope of inference. With only a small number of cows,
typically in a single herd (and possibly a specialized
research herd), located in one part of the country, it
would be difficult to make confident inferences for all
cows across the United States. To overcome the short-
comings of designed trials related to sample size, the
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experiments need to be independently repeated numer-
ous times, in different herds, across different regions
of the country.

Another serious limitation of most designed trials for
determining the consequences of shortened dry periods
is that they usually involve short-term investigation
only. The long-term consequences of shortened dry peri-
ods need to be investigated before being recommended
to producers. Even if shortened DD resulted in no loss
in production in the subsequent lactation, there could
be other consequences that result in shortened herd
life. Designed experiments aimed at addressing this
aspect, although feasible, would be costly both finan-
cially and in terms of time. Furthermore, it seems likely
that the degree of control in a long-term experiment,
one of the potential advantages of designed trials, would
deteriorate over time.

Bachman and Schairer (2003) bring up a number of
good points related to use of field data for examining
the effect of DD, although most if not all of these can
be handled using appropriate edits and data analysis.
Designed experiments and observational studies both
have advantages and disadvantages. Furthermore, the
weaknesses of one are the strengths of the other. De-
signed trials have the potential advantage of better
control over some extraneous variables and, perhaps
most importantly, direct observation of cows involved.
They are limited, however, in their ability to detect real
differences, in their ability to ensure equal representa-
tion or proper correction for cow effects across groups,
in the scope of inference that can be made, and in their
ability to examine long-term consequences or interac-
tions with other factors, all of which are the strengths
of observational studies.

The objective should be to present dairy farmers, as
accurately as possible, with all the consequences of var-
ying dry period length. Both types of studies should be
done (and done well) to meet that goal. An extreme
viewpoint in either direction, that designed studies are
too small and therefore noninformative or that observa-
tional studies are “biased” and merit little if any consid-
eration, is contrary to accomplishing that goal.

CONCLUSIONS

The effects of varying dry period lengths can be esti-
mated from field data, free of bias by cow effects. The
best alternative for estimation is the use of an animal
model combined with inclusion of PrevM as a covariate
in the model for estimation. Prior correction of records
with estimates of cow effects from an animal model is
acceptable. A considerable advantage of estimates from
field data, compared with designed trials, is that they
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have the potential for much higher precision due to
large sample sizes.

A designed experiment with 10 or fewer cows/group
is noninformative and has an unacceptably high proba-
bility of leading to erroneous conclusions. Although the
use of 20 cows/group reduces this probability somewhat,
an absolute minimum of 30 cows/group is considerably
better and should be used whenever possible. Even with
30 cows/group, however, standard errors are large and,
thus, group sizes larger than 30 would be preferable
whenever feasible. With 30-cow groups, repeated trials
would still be needed to obtain results in which confi-
dence could be placed.

Previous-lactation milk yield should be included as
a covariate in the analysis of data from designed experi-
ments. Mature-equivalent production records corrected
using the predicted producing abilities computed quar-
terly by Animal Improvement Programs Laboratory
may be the best choice of trait for analysis in designed
trials. Correction of records using predicted producing
abilities would help eliminate cow effects and increase
the accuracy of estimates, which is the greatest weak-
ness of designed trials. If mature-equivalent yields are
used, however, scrutiny of the records involved would
be necessary because these records are extended to a
305-d basis, even for cows milking less than 305-d. Use
of 305-d records could conceal differences in lactation
yield if cows in either group failed to milk the full 305-
d, as would be the case if short dry periods led to earlier
dry off or earlier culling in the subsequent lactation.

ACKNOWLEDGMENTS

Ignacy Misztal is gratefully acknowledged for the use
of his BLUPF90 program, used to compute animal
model solutions.

Journal of Dairy Science Vol. 88, No. 4, 2005

REFERENCES
Animal Improvement Programs Laboratory. 2004. Trend in milk

breeding values for Holstein calculated August, 2004. Online.
Available: http://aipl.arsusda.gov/dynamic/trend/current/
trndx.html. Accessed Sept. 30, 2004.

Annen, E. L., R. J. Collier, and M. A. McGuire. 2003. Older cows
fared well without a dry period. Hoard’s Dairyman 148:650.

Bachman, K. C. 2004. Will shorter dry periods pay for you? Hoard’s
Dairyman 149:321.

Bachman, K. C., and M. L. Schairer. 2003. Invited review: Bovine
studies on optimal lengths of dry periods. J. Dairy Sci.
86:3027–3037.

Funk, D. A., A. E. Freeman, and P. J. Berger. 1987. Effects of pervious
days open, previous days dry, and present days open on lactation
yield. J. Dairy Sci. 70:2366–2373.

Grummer, R. 2004. Here’s more on short dry periods. Hoard’s Dairy-
man 149:142.

Grummer, R. R., and R. R. Rastani. 2004. Why reevaluate dry period
length? J. Dairy Sci. 87:E77–E85.

Gulay, M. S., M. J. Hayen, K. C. Bachman, T. Belloso, M. Liboni,
and H. H. Head. 2003. Milk production and feed intake of Holstein
cows given short (30-d) or normal (60-d) dry periods. J. Dairy Sci.
86:2030–2038.

Henderson, C. R. 1982. Best linear unbiased prediction in populations
that have undergone selection. Page 191 in Proc. World Congr.
Sheep and Beef Cattle Breeding, Palmerston North, New Zealand.

Henderson, C. R. 1984. Applications of linear models in animal breed-
ing. University of Guelph, Guelph, ON, Canada.

Keown, J. F., and R. W. Everett. 1986. Effect of days carried calf,
days dry, and weight of first calf heifers on yield. J. Dairy Sci.
69:1891–1896.

Klein, J. W., and T. E. Woodward. 1943. Influence of length of dry
period upon the quantity of milk produced in the subsequent
lactation. J. Dairy Sci. 26:705–713.

Kuhn, M. T., J. L. Hutchison, and H. D. Norman. 2005. Characteriza-
tion of days dry in US Holsteins. J. Dairy Sci. 88:1147–1155.

Linderoth, S. 2003. Decrease dry periods by 20 days. Dairy Herd
Management. Online. Available: http://www.dairyherd.com. Ac-
cessed Oct. 12, 2004.

Makuza, S. M., and B. T. McDaniel. 1996. Effects of days dry, previous
days open, and current days open on milk yields of cows in Zim-
babwe and North Carolina. J. Dairy Sci. 79:702–709.

Mohr, P. 2004. 60 days dry – says who? Dairy Today. Online. Avail-
able: http://www.agweb.com/pub_get_article.asp?sigcat=dairy&
pageid=106373. Accessed Oct. 12, 2004.

Pollak, E. J., and R. L. Quaas. 1981. Monte Carlo study of genetic
evaluations using sequentially selected records. J. Anim. Sci.
52:257–264.

Rastani, R., and R. Grummer. 2003. Shorter dry periods look good.
Hoard’s Dairyman 148:599.


