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ABSTRACT

A method of accounting for differences in covariance
components of test-day milk records was developed
based on transformation of regressions for random ef-
fects. Preliminary analysis indicated that genetic and
nongenetic covariance structures differed by herd milk
yield. Differences were found for phenotypic covari-
ances and also for genetic, permanent environmental,
and herd-time covariances. Heritabilities for test-day
milk yield tended to be lower at the end and especially
at the start of lactation; they also were higher (maxi-
mum of ∼25%) for high-yield herds and lower (maxi-
mum of 15%) for low-yield herds. Permanent environ-
mental variances were on average 10% lower in high-
yield herds. Relative herd-time variances were ∼10%
at start of lactation and then began to decrease regard-
less of herd yield; high-yield herds increased in midlac-
tation followed by another decrease, and medium-yield
herds increased at the end of lactation. Regressors for
random regression effects were transformed to adjust
for heterogeneity of test-day yield covariances. Some
animal reranking occurred because of this transforma-
tion of genetic and permanent environmental effects.
When genetic correlations between environments were
allowed to differ from 1, some additional animal re-
ranking occurred. Correlations of variances of genetic
and permanent-environmental regression solutions
within herd, test-day, and milking frequency class with
class mean milk yields were reduced with adjustment
for heterogeneous covariance. The method suggests a
number of innovative solutions to issues related to het-
erogeneous covariance structures, such as adjusted es-
timates in multibreed evaluation.
(Key words: heterogeneous covariance, covariance
structure, test-day yield, random regression)

Abbreviation key: EM = expectation maximization,
HC = heterogeneous covariance, RRM = random re-
gression model.
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INTRODUCTION

Accounting for heterogeneity of covariance among
test-day observations is an important component of
test-day model development. For lactation models, the
issue of heterogeneous variance has been addressed by
numerous studies (e.g., Dong and Mao, 1990; Short et
al., 1990), and most genetic evaluation systems account
for heterogeneity of variance through data adjustment
prior to analysis (e.g., Wiggans and VanRaden, 1991)
or direct estimation during analysis (e.g., Meuwissen et
al., 1996). Only a few systems correct for heterogeneous
variance components. One example is in the US, where
heritability is adjusted (Wiggans and VanRaden, 1991).

For test-day models, most studies have focused on
heterogeneity of phenotypic (e.g., Ibáñez et al., 1996;
Pool and Meuwissen, 2000) or residual (e.g., Ibáñez et
al., 1999; Rekaya et al., 1999; Jaffrezic et al., 2000)
variance. However, heterogeneity of covariance compo-
nents, which is more difficult to estimate, has received
limited attention despite its importance. The assumed
covariance structures among test-day yields are used
for estimation over the whole lactation or across lacta-
tions, even if information is available only for a few test
days (e.g., Pool and Meuwissen, 1999).

One feature of random coefficient models, also known
as random regression models (RRM), is that they allow
for modeling of covariances through regressions. That
feature has been used in studies on heat stress (Ravag-
nolo and Misztal, 2000) and on reaction norm models
(Strandberg et al., 2000). With current RRM, covari-
ances are modeled as functions of regression and ele-
mentary covariances among regressions.

Simple, robust estimation procedures for heteroge-
neous covariance (HC) matrices currently are not avail-
able. The first objective of this study, therefore, was to
estimate HC components according to herd milk yield.
The second objective was to show that HC across herd
yield levels can be modeled by adjusting a priori regres-
sions for random effects. The final objective was to ex-
tend the method to study and to model genetic correla-
tions between herd yield levels that can be <1.
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MATERIALS AND METHODS

Data

Test-day milk yields (222,679) of first-parity Holstein
cows in New York, Wisconsin, and California herds
from 1990 through 2000 were adjusted additively to a
constant age and lactation stage using the adjustment
factors of Bormann et al. (2002). Those factors had been
obtained from a much larger data set, of which the
data for this study were a subset. The comparability of
results with those from other investigations of test-day
evaluation methodology with US data (Bormann et al.,
2002, 2003; Gengler and Wiggans, 2002; Wiggans et
al., 2002) and the availability of estimates for effect of
age and lactation stage based on a large population
were considered to be of sufficient benefit to offset possi-
ble effects on variance reduction for random effects from
data adjustment prior to analysis. Eventual shifts in
the overall mean for the data were accommodated by
adjusting a fixed effect so that the mean was kept in
the model.

This approach also allowed the direct use of mean
herd yield levels. Four data subsets of similar size
(55,604 to 55,685 records) were defined by mean herd
yield. Herds could change yield levels after 2 yr. Differ-
ence in mean test-day milk yield of first-parity cows in
the highest (37.4 kg) and lowest (23.3 kg) subsets for
herd yield was 14.1 kg. The complete data set also was
grouped into three randomly selected subsets, which
had similar size (72,582 to 76,641 records) and mean
test-day milk yield (29.0 to 30.7 kg). The three random
data subsets were used to compute genetic correlations
across environments, which were then averaged over
the three data sets.

Covariance Structure

Consider the following RRM:

y = Xt + ∑
i

Qiui + e,

where y = vector of test-day records, t = vector of fixed
effects, X = incidence matrix linking y and t, Qi = matrix
of regressors, ui = vector of random effects i, and e =
vector of residuals. The test-day record is nested in a
given lactation of a given animal. The covariances
among observations for that lactation and animal are
as follows:

Var(y) = ∑
i

Qi Var(ui)Q′
i + Var(e),

which can be rewritten as
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Var(y) = ∑
i

QiGiQ′
i + R,

where Gi = elementary covariance matrix for random
effects and R = Var(e); QiGiQ′

i creates the covariance
components linked to random effect i in Var(y). At this
stage, the matrices of regressors can be used to generate
HC structures by modeling the covariances as functions
of regression variables:

Var(yj) = ∑
i

QijGijQ′
ij + Rj,

where Gij = covariance matrix of effect i in environ-
ment j.

At present, direct estimation of heterogeneous Gij in
an RRM is too complex for available procedures. An
indirect way to estimate heterogeneous Gij is to decom-
pose the matrix into orthogonal components through
a transformation matrix (T), which would render Gij
independent of the heterogeneity strata (G0i =
TijGijT′

ij) and result in

Var(yj) = ∑
i

Qij(Tij)−1G0i(T′
ij)−1Q′

ij + Rj.

Conceptually, the simple transformation of regressors
T∗

ij “bends” the matrix of coefficients through Q∗
ij =

QijT∗
ij = Qij(Tij)−1. This approach allows replacement of

Gij, which differs by environment j and effect i, with a
single matrix G0i for every random effect i. Thus, HC
structures can be modeled easily for both nongenetic
and genetic random effects.

The initial underlying assumption is that genetic cor-
relations between environments are unity for every
transformed regression. Transformation of regressors
was done independently for the different random ef-
fects. Possible dependencies among the variation of
some of those random effects (e.g., genetic and perma-
nent environmental) were not considered.

Although several possibilities exist for T, an obvious
candidate is the inverse of the lower Cholesky decompo-
sition because G0i then becomes an identity matrix. The
Cholesky matrix is also a matrix generalization of the
square root of the covariances. The approach used was a
simple generalization of the standardization of random
effects approach used in France (Robert-Granié et al.,
1999). The technique of rescaling random coefficients
in mixed linear models so as to make them orthogonal
via a Cholesky triangular transformation of the vari-
ance covariance matrix has been previously reported
(e.g., Groeneveld, 1994). The advantage of doing this
in a random regression or random coefficient models
setting is that those models allow for the direct integra-
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tion of the transformation. The order of random regres-
sions can be chosen so that the first transformed regres-
sion is defined as the standardized constant term. Rob-
ert-Granié et al. (2002) extended this idea to
heteroskedastic random regression models. For this
study, heterogeneity in Gij was modeled by modeling
T∗

ij. However, instead of applying a generalized expecta-
tion-maximization (EM) algorithm (e.g., Foulley and
Quaas, 1995), T∗

ij was modeled a posteriori based on Gij

matrices obtained from the different environments,
where the distinction among environments was based
on a continuous variate (e.g., yield level within hetero-
geneity strata). Integrated modeling similar to the
methods proposed by Robert-Granié et al. (2002) is
mathematically straightforward but was not used in
the present study because of computing complexity.

Estimation of covariance components. Covari-
ance components were estimated using a combination of
EM and average-information REML. If positive definite
values could not be obtained through average-informa-
tion REML, estimates were obtained through a combi-
nation of EM and average-information REML (Druet
et al., 2003).

Modeling of covariance components based on
herd yield. Estimated covariance components (Gij)
were transformed into lower Cholesky triangular ma-
trices Lij, where i = random effect and j = herd yield
levels (environment). Every elementary element k of
Lijk (lijk) was then modeled as a constant, linear, and
quadratic function of standardized milk yield s for class
mean m based on herd, test-day, and milking frequency:

lijk = α0ik + αliksj + α2iks2
j + εijk,

where α = regression coefficient; s = −1 + 2[(m − 23.3)/
(36.8 − 23.3)] = standardized milk yield when 23.3 and
36.8 kg of milk were means for lowest and highest herd-
time yield classes, respectively, −1 < s < 1, and m =
mean herd milk yield for a 2-yr period; and ε = residual.
In matrix algebra, for every effect i, li = Sαi + εi, or
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where ⊗ = Kronecker product and nk = number of non-
zero elements in L.

Estimates of αik (α̂ik) were obtained independently
for every effect i and every coefficient k by solving α̂ik =
(S′S)−1S′lik. The solutions allowed definition of the

Journal of Dairy Science Vol. 88, No. 8, 2005

transformation matrix as a function of standardized
yield s. Observed covariances were regressed towards
expected covariances based on herd yield. This regres-
sion towards expected variances is similar to the
method described by Robert-Granié et al. (2002); how-
ever, their method was integrated, and the parameters
of the dispersion models were estimated using general-
ized EM REML (e.g., Foulley and Quaas, 1995).

A second major difference from the method of Robert-
Granié et al. (2002) was that the variances and covari-
ances in this study were modeled with a global general-
ized square-root (Cholesky triangular) transformation
of the entire matrix instead of a log transformation
for variances and no transformation for correlations.
Modeling under the Cholesky transformation guaran-
teed positive definiteness of the covariance matrices.
The method of Robert-Granié et al. (2002) does not guar-
antee correlations in the parameter space (between −1
and 1) but has the advantage of being an integrated
approach. Further research should be able to merge the
indirect method in this study with the direct method
of Robert-Granié et al. (2002).

Heterogeneous error variances were modified in a
similar fashion by replacing Q with an identity matrix.
Mixed-model equations were then adjusted by
weighting according to the assumed inverse of the resid-
ual covariance of a given record.

Applied Models

Three different models were applied to the various
data sets to estimate covariance components and to
calculate EBV. Table 1 summarizes application of the
models to the data sets.

Covariance estimation based on herd yield. The
four data subsets defined by mean herd yield were used
to estimate four sets of covariance components with
the RRM

y = Xt + Qhh + Qaa + Qpp + e, [1]

where y = vector of test-day records for milk yield; t =
vector of fixed class effects for herd, test day, and milk-
ing frequency; h = vector of random effects for 2-yr time
period within herd (herd-time effects); a = vector of
animal effects (breeding values); p = vector of random
permanent environmental effects; e = residual effect;
X = incidence matrix that links y and t; Qh, Qa, and Qp =
matrices of constant, linear, and quadratic modified
Legendre polynomials (Gengler et al., 1999): r0 = 1, r1 =
30.5x, and r2 = (5/4)0.5(3x2 − 1), where x = −1 + 2[(DIM
− 1)/(365 − 1)], that link y and h, a, and p, respectively.
A previous study (Gengler and Wiggans, 2001) of the
same data had found that the portion of total variance
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Table 1. Applied models, data sets, and analysis results.

Analysis results

Subsets based Random
Applied All on mean herd subsets
model Model description data yield (n = 4) (n = 3)

1 No heterogeneous covariance EBV Covariance —
adjustment; genetic correlation component
across environments = 1 estimates

2 Heterogeneous covariance EBV — Covariance
adjustment; genetic correlation component
across environments = 1 estimates1

3 Heterogeneous covariance EBV — Covariance
adjustment; genetic correlation component
across environments ≠ 1 estimates

1Computations used for likelihood ratio tests to compare Models [2] and [3].

explained by a herd-time effect was not negligible;
therefore, h was included to allow herd-specific lacta-
tion curves. The covariance structure for Model [1] can
be summarized as

Var









h
a
p
e









=









Ih ⊗ H0 0 0 0
0 A ⊗ G0 0 0
0 0 Ip ⊗ P0 0

0 0 0 Inσ
2
e









,

and

Var(y) = Qh(Ih ⊗ H0)Q′
h + Qa(A ⊗ G0)Q′

a

+ Qp(Ip ⊗ P0)Q′
p + Inσ

2
e,

where I = identity matrix; H0, G0, and P0 = elementary
covariance matrices among the three random regres-
sions for herd-time, genetic, and permanent environ-
mental effects, respectively; A = additive relationship
matrix, h = number of herd-time effects, p = number of
animals with records, and n = number of test-day
records.

Second-order polynomials were used as a compromise
between model complexity and desire to achieve a rea-
sonably good fit. Preliminary research had shown that
the constant, linear, and quadratic polynomials were
highly related to the first, second, and third eigenvec-
tors, which explained a large part of the variances for
all three random effects.

Computation of EBV with and without HC ad-
justment. The complete data set was analyzed with
and without HC adjustment. To provide EBV without
HC adjustment, the regular mixed-model equations
from Model [1] were solved using mean coefficients (lijk =
α0ik). To provide EBV with HC adjustment, mixed-
model equations with transformed regressors based on
standardized milk yield s were solved:
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y = Xt + Q∗
h(s)h∗ + Q∗

a(s)a∗ + Q∗
p(s)p∗ + w(s)e∗, [2]

where Q∗
h(s), Q∗

a(s), and Q∗
p(s) = matrices of transformed

regressors dependent on standardized herd yields s and
linking y with h∗, a∗, and p∗ and w(s) = square root of
the inverse of the weight dependent on s. The associated
covariance structure was

Var









h∗

a∗

p∗

e∗









=









Ih ⊗ I3 0 0 0
0 A ⊗ I3 0 0
0 0 Ip ⊗ I3 0
0 0 0 W









,

where W = Inw2
(s), a diagonal matrix with diagonal ele-

ments equal to the inverse of the weight associated with
the record. Covariance of the observations based on
s was

Var(y(s)) = Q∗
h(s)(Ih ⊗ I3)Q∗′

h(s) + Q∗
a(s)(A ⊗ I3)Q∗′

a(s)

+ Q∗
p(s)(Ip ⊗ I3)Q∗′

p(s) + Inw2
(s).

Genetic correlation across environments ≠ 1. Al-
though Model [2] allows for differences in genetic covar-
iance across herd yield levels, it does not allow genetic
correlation across environments to differ from 1. Re-
cently, several studies (e.g., Castillo-Juarez et al., 2002)
used RRM as an approach to address this issue.

Model [2] could be generalized by including separate
genetic effects for high and low yield. Every observation
then potentially would be influenced by two sets of ge-
netic effects. Genetic effects for every animal then could
be defined continuously from high to low yield as a∗

(s) =
φ1(s)a∗

1 + φ2(s)a∗
2, where φ1 and φ2 are coefficients for envi-

ronments defined as a function of s with φ1(s) = (1 + s)/
2 and φ2(s) = 1 − φ1(s) = (1 − s)/2. The coefficients φ1(s)
and φ2(s) also would link observations with s. If an obser-
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vation was at the maximal herd yield level (s = 1), then
φ1(1) = 1 and φ2(1) = 0; if an observation was at the
minimal low herd yield level (s = −1), then φ1(−1) = 0
and φ2(−1) = 1.

Given those conventions, Model [2] easily was rewrit-
ten to allow differences in covariances across environ-
ments and also genetic correlations that differed from 1:

y(s) = Xt + Q∗
h(s)h + φ1(s)Q∗

a(s)a∗
1 [3]

+ φ2(s)Q∗
a(s)a∗

2 + Q∗
p(s)p + w(s)e∗.

Covariance matrices for Model [3] were as follows:
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and

Var(y(s)) = Q∗
h(s)(Ih ⊗ I3)Q∗′

h(s)

+



φ1(s)Q∗

a(s) φ2(s)Q∗
a(s)








A ⊗





I3 D
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φ1(s)Q∗′
a(s)

φ2(s)Q∗′
a(s)





+ Q∗
p(s)(Ip ⊗ I3)Q∗′

p(s) + Inw2
(s),

where D = diag[φk] is a diagonal matrix of dimension
3 with the correlation between transformed regressors
in the two environments. In Model [3], differences in
covariances across environments were accounted for by
the Cholesky transformation as in Model [2]; however,
correlations across environments that differed from 1
were modeled based on separation into environmentally
dependent genetic effects. Covariance of the total ge-
netic effects could be written as

Var(a∗
p(s)) = [φ1(s) φ2(s)]




A ⊗





I3 D
D I3













φ1(s)

φ2(s)





= φ2
1(s)(A ⊗ I3) + (φ2

2(s))(A ⊗ I3) + 2φ1(s)φ2(s)(A ⊗ D).

When the correlation between transformed regressors
in the two environments tended to 1, covariance of the
total genetic effects simplified to

Var(a∗
(s)) = (φ2

1(s) + φ2
2(s) + 2φ1(s)φ2(s))(A ⊗ I3)

= (φ1(s) + φ2(s))2(A ⊗ I3) = A ⊗ I3

as in Model [2].
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To determine if the introduction of a genetic correla-
tion across environments that differed from 1 improved
model fit, likelihood ratio tests were conducted with
covariance components estimated from each of the
three random data subsets using Models [2] and [3].

The estimated covariance components from Model [3]
were applied to calculate EBV for the complete data set.

Comparison of EBV

To demonstrate applicability of the methods and
models, EBV were computed and expressed on a 305-
d lactation basis; EBV from Models [2] and [3], which
included transformation, were back-transformed to a
mean scale. For cows, the same reverse transformation
was done for the sum of EBV and permanent environ-
mental effects. For genetic correlation ≠ 1, EBV for
every animal were defined continuously from high to
low yield as a∗

(s) = φ1(s)a∗
1 + φ2(s)a∗

2, where φ1(s) + φ2(s) =
1, and reported for three environments: high herd yield
(φ1(1) = 1; φ2(1) = 0), medium herd yield (φ1(0) = 0.5; φ2(0) =
0.5), and low herd yield (φ1(−1) = 0; φ2(−1) = 1). Rankings
were created for cows and for sires with ≥10 daughters
based on unadjusted EBV, HC-adjusted EBV with ge-
netic correlation = 1, and HC-adjusted EBV with ge-
netic correlation ≠ 1.

One consequence of not applying adjustments for het-
erogeneity of covariance is that solutions in high-vari-
ance environments are more variable than in low-vari-
ance environments. To test if the proposed HC adjust-
ment method corrects this problem, variances of
regression solutions for genetic and permanent environ-
mental effects were computed in every herd, test-day,
and milking-frequency class and compared with mean
milk yield for that class. If the HC adjustment was
successful, correlation between those variances and
class mean yield should be reduced.

RESULTS AND DISCUSSION

Covariance Components Based on Herd Yield

Covariance components were estimated with Model
[1] and then modeled and expressed as functions of s.
For simplicity, only mean variances with s = 0 (without
HC adjustment) and extreme variances with s = −1 or
s = 1 (with HC adjustment) are reported. Heritabilities
for test-day milk yields (Figure 1) were substantially
higher for high-yield than for low-yield herds and
reached ∼25% compared with ∼15%, respectively. Me-
dium-yield herds had intermediate heritability. How-
ever, the heritability trends were only somewhat simi-
lar to trends for permanent-environmental variance
(Figure 2) as only high-yield herds differed substan-
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Figure 1. Heritability of test-day milk yield by DIM for herds
with low (×), medium (�), or high (�) yield.

tially with lower relative permanent-environmental
variance compared with herds with other yield levels.
Combined variance for genetic and permanent environ-
mental effects may be similar across herd yields, but a
larger portion of that combined variance may be genetic
for high-yield herds.

Relative herd-time variances (Figure 3) did not show
similar patterns. Low-yield herds had higher herd-time
variance at start of lactation, whereas variance for me-
dium-yield herds was higher at start and end of lacta-
tion. For high-yield herds, variance was high at the
start of lactation, decreased until about 65 DIM, and
then increased until around 220 DIM to the same vari-
ance level as at the start of lactation, and again de-
creased through the end of lactation. No explanation
was apparent for the differing relative variance pat-
terns, and additional research is required to investigate
possible negative effects.

Figure 2. Relative variance of permanent environmental effect
on test-day milk yield by DIM for herds with low (×), medium (�),
or high (�) yield.
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Figure 3. Relative variance of herd-time effect on test-day milk
yield by DIM for herds with low (×), medium (�), or high (�) yield.

Relative variance patterns should be considered to-
gether with the pattern for phenotypic variance (Figure
4) over lactation. Plots for phenotypic variance were
similar in shape but clearly not identical across herd
yield levels. For low-yield herds, variances were nearly
constant with rather limited increases at start and end
of lactation. Compared with low-yield herds, phenotypic
variances for medium-yield herds tended to be higher
and increase more at the end of lactation. For high-
yield herds, overall phenotypic variance and rate of
increase in variance with DIM was substantially
greater than for the other yield levels. The variance
increase with herd yield level could result primarily
from better management in high-yield herds, which al-
lowed cows to express differences. The large heritability
difference seems to confirm that animals in high-yield
herds express relatively more genetic variance than
do those in low-yield herds. The results of this study
support that lactation stage and herd yield level should

Figure 4. Phenotypic variance of test-day milk yield by DIM for
herds with low (×), medium (�), or high (�) yield.
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Figure 5. Phenotypic correlation of test-day milk yield at 5 DIM
with test-day yield at other DIM for herds with low (×), medium (�),
or high (�) yield.

be considered when developing adjustments for hetero-
geneity of phenotypic covariance.

Test-day milk yield at 5 DIM was compared with test-
day yield at other DIM. Although phenotypic correla-
tions (Figure 5) were remarkably stable, genetic corre-
lations (Figure 6) decreased with herd yield level, espe-
cially for low-yield herds. Using inflated correlations
could impact animal rankings, especially for dairy bulls
with early evaluations based primarily on daughter re-
cords from early lactation in low-yield herds.

Estimation of Genetic Correlations
Across Environments

Likelihood ratio tests for the three random data sub-
sets used to compare Models [2] and [3] showed that in
all cases the introduction of additional parameters in

Figure 6. Genetic correlation of test-day milk yield at 5 DIM with
test-day yield at other DIM for herds with low (×), medium (�), or
high (�) yield.
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the models significantly (P < 0.001) improved the fit;
likelihood ratios were 75.93, 84.24, and 65.15.

Means of estimated REML genetic correlations across
environments from the three random data subsets were
0.972, 0.799, and 0.968 for the three Legendre coeffi-
cients. Standard deviations were 0.025, 0.211, and
0.041, respectively, which indicated a rather large de-
gree of uncertainty in the estimation of the correlation
for the second regression. Because of the variation in
subset genetic correlations, no definitive conclusions
can be made about genetic × environmental interac-
tions. Genetic differences across environments were re-
ported by Veerkamp and Goddard (1998). In this study,
the definition of environments and data sampling based
solely on mean herd yield did not allow identification
of the primary reason for genetic correlations of <1. A
recent study by Raffrenato et al. (2003) suggests that
regional differences can be a factor, and data for this
study were pooled from three states with quite different
environmental conditions.

Comparison of Rankings With
and Without HC Adjustment

Rank correlations of cow evaluations with and with-
out HC adjustment were >0.99 for EBV and >0.98 for
permanent environmental effect. However, some re-
ranking did occur for the top 10 cows (Table 2) and for
the top 10 bulls with ≥10 daughters with records (Table
3). The most reranking occurred for EBV plus perma-
nent environmental effects (Table 2). Although EBV
were quite stable (probably because families of animals
seldom were concentrated in one environment and ties
existed through the relationship matrix), HC adjust-
ment resulted in some reranking of the top bulls based
on evaluations without adjustment. Four (genetic corre-
lation = 1) and 5 (genetic correlation ≠ 1) bulls of the
original top 10 were eliminated.

For genetic correlation ≠ 1, all animals had breeding
values across all environments because of the continu-
ous description of genetic effects as a function of stan-
dardized milk yield. As shown in Tables 2 and 3, animal
rankings differed by mean herd yield. Evaluations of
some of the top 10 bulls based on evaluations without
HC adjustment were greatly affected by HC adjust-
ment, with changes up to 121 kg between low- and high-
yield environments. With additional research to verify
the level of correlation across environments, this ob-
served difference could lead to the use of the proposed
HC adjustment method to create a ranking of bulls
specific to a herd based on the yield level of that herd
(Castillo-Juarez et al., 2002).
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Table 2. Comparison of EBV, EBV plus permanent environmental (PE) effects, and rankings for evaluations
with and without heterogeneous covariance (HC) adjustment and considering genetic correlation across
environments and mean herd yield (low, medium, or high) for top 10 cows.

Evaluation with HC adjustment

Genetic correlation ≠ 1
Evaluation without Genetic
HC adjustment correlation = 1 High Medium Low

EBV (kg) and rank (in parentheses) EBV (kg) and rank (in parentheses)
1245 (1) 1398 (1) 1410 (1) 1414 (1) 1419 (1)
1197 (2) 1203 (3) 1172 (3) 1191 (3) 1210 (3)
1182 (3) 1242 (2) 1200 (2) 1213 (2) 1227 (2)
1154 (4) 1155 (4) 1144 (6) 1148 (4) 1153 (4)
1149 (5) 1148 (5) 1133 (7) 1137 (7) 1140 (5)
1143 (6) 1135 (7) 1166 (4) 1141 (5) 1115 (9)
1106 (7) 1081 (11) 1040 (19) 1085 (11) 1131 (6)
1101 (8) 1146 (6) 1150 (5) 1140 (6) 1129 (7)
1084 (9) 1071 (13) 1056 (15) 1060 (17) 1064 (16)
1079 (10) 1042 (17) 1022 (20) 1034 (20) 1046 (20)

EBV + PE (kg) and rank (in parentheses) EBV + PE (kg) and rank (in parentheses)
4606 (1) 4563 (6) 4554 (6) 4592 (6) 4631 (5)
4538 (2) 4238 (9) 4239 (9) 4276 (9) 4314 (8)
4501 (3) 4627 (5) 4615 (5) 4619 (5) 4623 (6)
4480 (4) 4720 (2) 4741 (2) 4751 (2) 4760 (2)
4411 (5) 5090 (1) 5087 (1) 5100 (1) 5113 (1)
4365 (6) 3621 (24) 3611 (24) 3601 (25) 3590 (28)
4328 (7) 4675 (3) 4680 (3) 4699 (3) 4718 (3)
4204 (8) 3991 (13) 4037 (11) 3942 (14) 3848 (18)
4195 (9) 4655 (4) 4647 (4) 4676 (4) 4706 (4)
4050 (10) 4483 (7) 4466 (7) 4476 (7) 4486 (7)

Comparison of Class Variances With
and Without HC Adjustment

Correlations of variances of random regression solu-
tions for genetic and permanent environmental effects
within herd, test-day, and milking-frequency class with
class mean yields (Table 4) were smaller with HC ad-
justment than without it. The reduction in correlation
was much smaller for genetic than for permanent envi-
ronmental solutions (for which correlations became
nearly 0). The anticipated reason for the difference in

Table 3. Comparison of EBV and rankings for evaluations with and without heterogeneous covariance (HC)
adjustment and considering genetic correlation across environments and mean herd yield (low, medium, or
high) of daughter for top 10 bulls with ≥10 daughters with records.

EBV (kg) and rank (in parentheses) based on evaluation withEBV (kg) and rank
HC adjustment(in parentheses)

based on evaluation Genetic correlation ≠ 1
without HC Daughters Genetic
adjustment (no.) correlation = 1 High Medium Low

1099 (1) 54 1111 (1) 1168 (1) 1132 (1) 1097 (1)
984 (2) 67 921 (2) 961 (2) 929 (2) 896 (3)
926 (3) 159 900 (3) 920 (3) 907 (3) 893 (5)
898 (4) 10 851 (7) 832 (7) 844 (8) 855 (9)
869 (5) 21 776 (18) 769 (17) 783 (16) 796 (16)
867 (6) 141 869 (5) 862 (4) 857 (5) 851 (10)
861 (7) 10 842 (9) 839 (6) 838 (9) 836 (12)
856 (8) 222 803 (11) 750 (20) 790 (15) 829 (13)
829 (9) 12 825 (10) 773 (15) 832 (10) 892 (6)
823 (10) 16 756 (21) 771 (16) 776 (19) 782 (21)
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the effect of HC adjustment for genetic and permanent
environmental effects was the assumption of a perfect
genetic correlation across environments. However, even
with genetic correlation ≠ 1 (Table 4), a similar pattern
was observed. If the effect of HC adjustment was small,
only a few animal rankings would change as was ob-
served in the example data sets (Tables 2 and 3). Corre-
lations for genetic solution variances with class mean
yield were reduced somewhat with HC adjustment and
were smallest for low-yield herds.
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Table 4. Correlations of variances of random regression solutions for genetic and permanent environmental
effects within herd, test-day, and milking-frequency class with class mean yields with and without heteroge-
neous covariance (HC) adjustment and considering genetic correlation across environments and mean herd
yield (low, medium, or high).

Correlation with class mean yield

HC Adjustment
Legendre Genetic correlation ≠ 1

Model regression No HC Genetic
Effect coefficient1 adjustment correlation = 1 High Medium Low

Genetic r0 0.47 0.42 0.45 0.42 0.39
r1 0.57 0.41 0.52 0.40 0.27
r2 0.56 0.39 0.44 0.40 0.36

Permanent environmental r0 0.48 −0.02 −0.02 −0.02 −0.02
r1 0.56 0.12 0.13 0.13 0.13
r2 0.54 0.10 0.10 0.10 0.10

1r0 = 1, r1 = 30.5x, and r2 = (5/4)0.5(3x2 − 1), where x = −1 + 2[(DIM − 1)/(365 − 1)].

CONCLUSIONS

Currently, the methods used for HC adjustment in
genetic evaluations with test-day models are often pre-
adjustments (International Bull Evaluation Service,
2004). Some evaluation centers are testing or consider-
ing methods (e.g., Lidauer and Mäntysaari, 2001) based
on the approach of Meuwissen et al. (1996), but no
country is yet adjusting regressions. Although this
study was not directly related to current HC adjustment
methods, some of its results could influence the choice
of future methods. Genetic and nongenetic covariance
structures were found to be different according to herd
milk yield. Differences were found not only for pheno-
typic covariances but also for heritability, permanent
environmental, and herd-time variances. Current ad-
justment methods used by all major dairy countries
except the US and The Netherlands (International Bull
Evaluation Service, 2004) consider the variance ratios
to be constant. High-yield herds had higher heritabilit-
ies for test-day milk yields and lower relative perma-
nent environmental variances.

All currently used adjustment methods either correct
data prior to analysis or have been integrated into the
evaluation system and affect variances. This study
showed that a method based on transformed regressors
for random regression effects can be used to address
the issue of heterogeneity of test-day yield covariances.
As shown in the example data sets, some animal re-
ranking occurred because of the effect of this transfor-
mation on both genetic and permanent environmen-
tal effects.

A challenge in the developed HC adjustment method
is that nongenetic and genetic covariance matrices have
to be estimated for different environments prior to cal-
culation of genetic evaluations. Those additional calcu-
lations could require substantial computing resources
and time, and the estimates could have large sampling
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errors. However, as shown with Model [3], the method
can be adapted to allow genetic correlations between
environments to differ from 1, which produced animal
reranking in the example data sets. Correlations of re-
gression coefficient variances for genetic and perma-
nent environmental effects within herd, test-day, and
milking frequency class with class mean milk yield were
reduced with HC adjustment.

The HC adjustment method that was developed sug-
gests innovative solutions for a number of issues related
to heterogeneity of covariances and their impact on
genetic evaluation systems. First, the general concept
can be used for data adjustment both prior to analysis
(single transformation of regressors) and during analy-
sis (transformation and update of transformation ma-
trices). Because every regression of each test-day yield
of a given cow can be adjusted, extreme flexibility can
be achieved within the modeling process. For example,
differences in covariance structures among breeds can
be accommodated for multibreed evaluation. Crossbred
animals can then be included by interpolation based on
the proportion of genes from each breed of ancestors.
This particular benefit could be especially important if
breeds are to be evaluated together because of their
simultaneous presence in contemporary groups or the
presence of crossbreds in contemporary groups (e.g.,
Jerseys and Holsteins in the US and dual-purpose Bel-
gian Blues and Holsteins in Belgium). The method de-
veloped also allows genetic correlations between envi-
ronments to differ from 1 and has potential use if differ-
ent bull rankings are needed according to source of
covariance differences.
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