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ABSTRACT

The objectives of this research were to assess the
utility of multiple services, rather than first service
only, and an expanded service sire term for prediction
of bull conception rate (CR) by artificial insemination
in the United States. The intent with the expanded
service sire term was to determine whether accuracy
could be improved by estimating factors affecting the
bull’s CR explicitly in the model and then formulating
the bull’s prediction as the sum of his own service sire
solution along with the solutions for the other factors.
Factors considered for the expanded service sire term
included age of the bull at the time of mating, stud,
inbreeding of the service sire, inbreeding of the mating
(potential embryo), and an additive genetic effect. Both
simulated and field data were used to study the objec-
tives. In simulation, predictions were compared with
true values, whereas with real data, predictions were
compared with the bulls’ average CR in set-aside data.
Field data, using lactations 1 to 5, included 3,312,998
breedings of 737,626 Holstein cows in 1,419 herds dis-
tributed over 43 states and across 12 yr (1995 to 2006).
The use of both multiple services and an expanded ser-
vice sire term improved the accuracy of predictions.
Multiple services contributed a 7 to 9% increase in accu-
racy, whereas the expanded service sire term improved
accuracy by an estimated 12%. The amount of improve-
ment in accuracy depends on the number of services
available, but even for bulls with at least 500 matings,
the combination of multiple services and an expanded
service sire term can be expected to result in an overall
increase in accuracy of at least 20%. Mean differences
between predictions and bulls’ average CR in set-aside
data indicated that this improvement in accuracy can
be brought about without introducing bias into the eval-
uations. Heritability estimates for artificial-insemina-
tion bull CR were essentially zero. Thus, use of an addi-
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tive genetic effect for the service sire will not be of
assistance in predicting bull fertility. All 4 of the other
factors used in the expanded service sire term contrib-
uted to improved accuracy, although age of the bull
at the time of mating was, by far, the major factor
(correlation of 55.2% with future-year CR when in-
cluded, 44.0% when not included). Allowing the stud
effect to vary by year and using only the stud’s most
recent year solution in prediction were shown to be
superior to using stud alone.
Key words: bull fertility, conception rate, prediction,
artificial insemination

INTRODUCTION

In May 2006, Animal Improvement Programs Labo-
ratory (AIPL) assumed responsibility for US evaluation
of service sire fertility in dairy cattle. As an initial step,
AIPL implemented Estimated Relative Conception
Rate (ERCR) that had been previously developed by
Dairy Records Management Systems and North Caro-
lina State University (Raleigh, NC). The ERCR evalua-
tions had been computed and published by Dairy Re-
cords Management Systems since 1986 and are de-
scribed by Clay (2000) and Clay and McDaniel (2001).
The general objective at AIPL is to explore possible
methods to improve predictions through trait defini-
tion, editing, and statistical modeling. The 2 specific
objectives of this research were to assess the use of 1)
multiple services and 2) an expanded service sire term.
It should be emphasized that, in contrast to bull evalua-
tions for traits such as production and conformation,
bull fertility evaluations are intended as phenotypic
rather than genetic evaluations.

The trait used in ERCR is nonreturn rate at 70 d
for first service only. Although nonreturn rate on first
service is a well-defined trait and, as such, circumvents
the problem of unknown outcomes for the last breedings
on file, it also excludes a considerable amount of infor-
mation by ignoring later breedings. Thus, one objective
of this research was to determine the utility of using
all breedings, rather than first service only.
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Most, if not all, current bull fertility evaluations, in-
cluding ERCR, statistically model the bull’s effect with
a single random term, corresponding to the individual
bull only. The basic model equation could be written
as: y = nuisance variables + SSR + e, where y is the
outcome of a breeding (success or failure); nuisance
variables are factors such as herd, cow, and so on; and
SSR is the effect of the service sire, fit as a random
variable. A bull’s evaluation, then, is simply his solution
for the SSR term, with the additional step of converting
to a probability in the cases in which threshold models
are used. Furthermore, a diagonal variance-covariance
matrix is used for the SSR term because the heritability
of dairy bull fertility in AI is generally assumed to be
zero. Thus, in contrast to genetic evaluations for perfor-
mance and conformation traits, only a bull’s own re-
cords contribute to his male fertility evaluation. How-
ever, factors such as service sire age and inbreeding
have been found to affect conception rate (CR) in dairy
cattle (Kuhn et al., 2006). Given the goal of phenotypic
rather than genetic evaluation, modeling such factors
as separate terms and then summing them along with
the bull’s own service sire solution may increase the
accuracy of evaluation because more observations
would contribute to estimation of the contributory fac-
tors. To illustrate, with 2 contributory factors (SSFA,
SSFB) the basic model considered above would be ex-
panded to y = nuisance variables + SSFA + SSFB + SSR
+ e, and a bull’s predicted CR would be the sum of the
solutions for SSFA, SSFB, and SSR. In a model with an
expanded service sire effect, the SSR term accounts for
variation caused by the bull and not accounted for by
the other contributory factors, such that it can be inter-
preted as a residual service sire effect.

The literature suggests several factors to consider for
an expanded service sire term. The long-standing view
of inbreeding depression for reproductive traits has
prompted consideration of the 2 inbreeding coefficients.
Falconer (1989), for example, reviewed numerous early
inbreeding studies and stated that “The most striking
observed consequence of inbreeding is the reduction of
the mean phenotypic value shown by characters con-
nected with reproductive capacity . . .” Significant ef-
fects of service sire inbreeding and inbreeding of the
mating in heifer breedings have also been found in pre-
vious research (Kuhn et al., 2006). Mating inbreeding
is a characteristic of the bull to the extent that he is
related to the population; as a bull’s relationship to the
population increases, the inbreeding of his embryos will
tend to increase and, thus, may subsequently affect the
viability of the conceptus as well.

Salisbury et al. (1978) presented several studies
showing effects of bull age on fertility and, more re-
cently, Kuhn et al. (2006) reported bull age effects on
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CR in US Holstein heifers as well. Stud was an obvious
consideration, given possible differences in bull man-
agement, semen processing procedures, postfreeze han-
dling, and perhaps monitoring of semen performance
in the field. Furthermore, previous studies (Gérard and
Humblot, 1991; Kuhn et al., 2006) have shown differ-
ences among studs for CR.

As implied by the absence of a genetic term in the
models of both Clay and McDaniel (2001) and Weigel
(2004), heritability of AI bull fertility in the United
States has either been assumed to be zero or ignored,
given the objective of formulating a phenotypic rather
than genetic predictor. Nonetheless, for the sake of com-
pleteness, heritability was also estimated because a
nonzero heritability would improve the accuracy of the
service sire term by allowing relative information to
contribute to the bull’s evaluation.

MATERIALS AND METHODS

General Aspects of Methodology

Both simulation and field data were used to assess
the utility of multiple services and an expanded service
sire term. In simulation, predictions of interest were
computed and compared with the service sire’s true
effect. With real data, the approach was to 1) split the
records into data for estimation and set-aside data,
where set-aside data were records not used in estima-
tion, 2) use only the estimation data to compute predic-
tions of interest, and 3) compare predictions with ser-
vice sires’ arithmetic average CR in the set-aside data.

Two methods were used to divide records into estima-
tion and set-aside data. The first was to split the data
in half by herd, and the second was to set aside a future
year for comparison; that is, to use all data up to a
given year for estimation and then use data from the
following year as set-aside data. In the split-data-by-
herd approach, herds were randomly assigned to 1 of
the 2 data sets. Another option would be to split the
data by cow, randomly assigning individual cows rather
than herds to 1 of 2 data sets. Simulation, however,
showed no advantage to this approach over splitting
data by herd, so data were split by herd to reduce the
problem of small contemporary group sizes with real
data.

The main statistic used to compare predictions with
true values (simulation) or average CR in set-aside data
(field data) was the correlation between the predictor
and the true value or average CR (i.e., accuracy). Mean
differences between predictors and true values or aver-
age CR (bias) were also computed. Standard deviations
of differences (square roots of mean square errors) were
also computed because mean square error serves as
basically a composite of both bias (squared) and accu-
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racy. The chi-square statistic, used by González-Recio
et al. (2005), was also computed for comparisons with
real data. The chi-square was calculated for each bull as

(NC − NCexpected)2 + (NF − NFexpected)2,

where NC was the number of observed conceptions in
set-aside data, NCexpected was the number of expected
conceptions, given the prediction, NF was the number
of failed breedings for the bull in the set-aside data, and
NFexpected was the number of expected failures, given the
prediction. The overall chi-square statistic was then
obtained by averaging across all bulls.

Preliminary comparisons showed that conclusions
were the same when a minimum of 100, 500, or 1,000
records per bull were required in both the estimation
and set-aside data for the split-herd approach. Thus,
final comparisons for the split-herd approach used only
bulls with at least 500 records in both data sets. For
the future-year approach, however, this requirement
resulted in too few bulls for comparison, so bulls were
required to have 500 records in the estimation data but
only a minimum of 100 records in the set-aside data.

Preliminary analyses using simulation indicated that
linear models were as effective as threshold models in
determining the usefulness of multiple services and
expanded service sire terms (i.e., in addressing the par-
ticular objectives of this research). Thus, although the
validity of a linear model for this binary trait warrants
thorough investigation, linear models only were used
for analyses of both simulated and field data to reduce
the substantial amount of computing time required in
this research and to limit the number of results to be
presented.

Simulation also showed that when categorical con-
tributory factors were fit as fixed effects, accuracy was
higher than when using a single service sire term, but
predictions were severely biased. However, when cate-
gorical contributory factors were fit as random, the ad-
vantage in accuracy was maintained with no bias. When
contributory effects are treated as random, the variance
components weight them appropriately, relative to the
random residual service sire term; when fit as fixed
effects, the solutions are unregressed and are simply
too large relative to the random residual service sire
component. Thus, further analyses considered (categor-
ical) factors contributing to the service sire effect only
as random effects.

Simulated Data

Description of Simulated Data. An underlying
variable, y, was simulated according to the equation
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y = Herd + Year + Parity + CowPE + CowBV [1]

+ SSFA + SSFB + SSR + e,

where CowPE and CowBV were permanent environmen-
tal and breeding value effects of the cow (mate of the
service sire) and SSFA, SSFB, and SSR constituted the
effect of the service sire, where SSFA and SSFB were
simulated as contributory factors. Both SSFA and SSFB
were categorical variables with 5 levels each, with rela-
tive frequencies of 0.30, 0.30, 0.20, 0.10, and 0.10 for
SSFA and 0.30, 0.25, 0.20, 0.15, and 0.10 for SSFB. A
total variance of 0.0078 (SD = 0.09) was attributed to
service sire and was split equally (in half) between the
SSR term and the contributory factors (SSFA, SSFB);
the half attributed to the contributory factors was, in
turn, divided equally between SSFA and SSFB. The total
variance attributed to service sire effects (0.0078) cor-
responded to a proportion of variance attributable to
service sires of approximately 0.7%. This rather low
proportion is consistent with prior estimates of variance
attributable to the service sire (Weigel, 2004). The vari-
ance-covariance matrix for SSR was of the form Iσ2

SS,
where I was an identity matrix and the scalar σ2

SS was
the variance of SSR.

An insemination was assigned the binary outcome
of success (conception) if the underlying variable (y)
exceeded a given threshold value, where thresholds
were defined so as to give a desired CR. As with real
data, CR was allowed to vary by service number, with
CR decreasing as service number increased. The overall
mean CR in the simulated data, across all services, was
35%. The simulation program generated data year-by-
year for a total of 10 yr, maintaining 100,025 cows/yr
and 250 service sires/yr. Across all 10 yr of simulation (1
replicate), there was an average of 2,472,572 breedings
and 464,399 cows. The total number of service sires per
replicate was 1,464.

Models for Analysis, Calculation of Predictions.
Four predictions were calculated with simulated data:
1) an expanded service sire term using all services for
estimation, 2) an expanded service sire term using first
services only, 3) service sire only (no expanded service
sire term) using all services, and 4) service sire only
using first service only. Equation [1] was the model
used to obtain solutions for the case of predictions with
an expanded service sire term. For predictions with no
expanded term, solutions were obtained by dropping
SSFA and SSFB from equation [1]. Predictions using
the expanded service sire term were calculated as 100
× (population mean + (sŝr + SŜFA + SŜFB), where sŝr,
SŜFA, and SŜFB were solutions from model [1]. Predic-
tions not using an expanded service sire term were
computed as 100 × (population mean + sŝr). The same
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model equations were used to obtain solutions for the
cases of using first service only, the only difference be-
ing that data were restricted to first breedings only.

Final results (e.g., correlations) were averages across
50 replicates. Correlations, for example, were calcu-
lated in each replicate for each predictor, with final
estimates being the average correlation across 50 repli-
cates. Estimated rather than true variances were used
for prediction with simulated data because use of true
variances could overestimate the potential of an ex-
panded service sire term. Variances were estimated by
REML (using AIreml developed by Tsuruta and Mis-
ztal) with 5 samples of approximately 160,000 cows
each, where samples were taken from each of 5 indepen-
dent replicates. The final variance components used for
estimation were averaged across the 5 replicates.

Field Data

Description of the Data. Breeding records were
being supplied by only 2 of the 4 major dairy record
processing centers in the United States. Although data
were predominantly from the eastern two-thirds of the
United States, the region most heavily covered by the
2 supplying processing centers, there were 43 states
with a minimum of 500 breedings in the data. Natural
services are also reported to AIPL but were excluded
from this research because current interest was in pre-
diction of AI fertility. Lactations 1 through 5 were in-
cluded, with a maximum of 7 breedings per lactation.
Matings were also included only if the cow had a test
day at least 70 d after the breeding so as to allow suffi-
cient time for reporting of another reproductive event.
Another edit applied to the field data was to eliminate
matings on the same cow that occurred close in time.
When 2 matings occurred less than 10 d apart, only the
later breeding was kept. Presumably, repeat matings
within short time periods are often the result of misdi-
agnosed heats on the first insemination, or perhaps the
animal was bred on a timed AI program and was later
observed in heat.

Breedings were restricted to Holstein cows with Hol-
stein service sires, the latter restriction being made to
avoid the need to model possible heterosis in the embryo
and also because the number of crossbred matings cur-
rently available is minimal. Other minor edits included
exclusion of cows known to be donor dams, exclusion
of matings for which the age, stud, or inbreeding of the
service sire were unknown, and exclusion of a lactation
for which the cow’s standardized milk yield was less
than 4,536 kg. The edit on standardized milk yield was
done to eliminate lactations in which the cow may have
experienced health, injury, or other unrecorded prob-
lems. Mean milk yield was 11,440 kg with a SD of 2,046
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kg. Thus, the 0.06% of lactations with yields less than
4,536 kg were more than 3 SD below the mean.

Three herd-year edits were applied: 1) at least 50% of
the herd’s lactating cows had to have at least 1 breeding
reported, 2) herd average CR had to be from 10 to 90%,
and 3) herds had to have at least 30 cows with a breed-
ing for each year they were included in the data. The
first edit was used to eliminate herds that report breed-
ings of only a portion (often only a small portion) of
their cows, whereas the second was to eliminate, among
other possible anomalies, herds that report only suc-
cessful breedings. The third edit was made to ensure
reasonable herd-year sizes for analysis. The final edited
data contained 3,312,998 breedings for 737,626 Hol-
stein cows in 1,419 herds distributed over 43 states and
across 12 yr (1995 to 2006), with an overall mean CR
of 29.6%. There were a total of 17,549 service sires,
many of which, however, had only a few matings and
thus did not contribute to comparisons with set-aside
data.

Model for Analysis, Calculation of Predictions.
The basic model equation used for analysis of field
data was:

y = HY + Year-State-Month + Parity + β1 × milk

+ β2 × milk2 + β3 × Cow_Age + β4

× Cow_Age2 + β5 × DIM + β6 × DIM2 + Cow_PE

+ A + SSR + (expanded_SSR) + e, [2]

where y was the result of the breeding (conception or
failure) and HY and Year-State-Month were the fixed
effects of herd year and year-state-month of breeding,
respectively. Parity was also fit as a fixed effect,
whereas lactational, standardized milk yield, cow age,
and DIM at breeding were fit as linear and quadratic
covariates. The terms Cow_PE and A were the random
permanent environmental and additive genetic effects
of the cow, respectively, and SSR was the random effect
of service sire. The variance-covariance matrices for
cow_PE and SSR were of the form Iσ2, where I was an
identity matrix and the scalar σ2 was the estimated
variance for each effect. The variance-covariance ma-
trix for cow breeding values was the usual animal model
matrix of Aσ2

a, where A was a matrix of additive rela-
tionships and the scalar σ2

a was the estimated additive
genetic variance. Model [2] was used in both the split-
herd and future-year analyses.

The expanded_SSR term always contained the bull’s
own effect (SSR) and also various alternative combina-
tions of the 4 candidate factors for an expanded service
sire term. To serve as a basis for comparison, service
sire alone was used and it was also used in conjunction
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with each of the 4 factors separately, which allowed
assessment of the contribution of each individual factor.
All 4 factors were also included along with SSR to deter-
mine the total benefit of the expanded service sire term.
Predictions were calculated as 100 × (population CR +
solutions for terms in expanded_SSR).

Predictors Compared in the Split-Herd Ap-
proach. A total of 11 predictors were computed using
the split-data-by-herd approach. Similar to simulation,
the first 4 predictions were the expanded service sire
term and service sire only predictors, each with both
multiple services and first service only. The other 7
predictors for the split-herd approach involved fitting
each of the 4 factors separately (multiple services only)
to allow some assessment of the magnitude of contribu-
tion of each factor. A total of 10 replicates were con-
ducted in the split-herd approach by simply resampling
herds a total of 10 times. As in simulation, the final
results (mean differences, correlations, etc.) were aver-
ages across all replicates; correlations, for example,
were calculated in each replicate and then averaged
across replicates to form the final estimates.

Predictors Compared in the Future-Year Ap-
proach. A primary difficulty with the future-year ap-
proach is that older, more popular bulls predominate
in the comparisons simply because the older bulls are
most likely to have an adequate number of matings for
comparison in both the estimation data and the future-
year (set-aside) data. This also implies that fewer bulls
would be available for comparisons. In contrast, the
split-data-by-herd approach includes a broader range
of bulls, because each bull has his matings split essen-
tially in half.

In this research, however, the split-herd approach
also had some disadvantages, in particular, the use of
contributory variables related to time. Assignment of
service sire age, for example, was straightforward in
estimation, but assignment of age for calculation of pre-
dictions was not straightforward in the split-herd ap-
proach because an individual bull’s age could have var-
ied considerably in the set-aside data. A bull has only
one value to compare with in the set-aside data (his
average CR), but when that value encompasses a span
of years, which age solution to use to predict CR in set-
aside data is unclear. Thus, in spite of its limitations,
there were several reasons for using the future-year
approach, in addition to the split-data-by-herd ap-
proach. First, it is a more direct test of the objective; the
objective is not to predict bull CR for matings occurring
simultaneously in time, but rather to predict future CR.
Second, it can serve as a separate, essentially indepen-
dent confirmation of at least general results from the
split-herd approach. And, finally, use of the time-depen-
dent contributory variables in the expanded service sire
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term is much more straightforward in the future-year
approach than with the split-data-by-herd approach.
Only 1 replicate was performed with the future-year
approach. Estimation data were restricted to matings
between 2002 and 2004, whereas the year 2005 served
as the set-aside year for comparison.

Given that AI companies may change procedures and
personnel over time, another variable of interest was
stud × year, in contrast to only the main effect of stud,
which assumes a constant effect over time. Stud × year
would be especially difficult to use in the split-herd
approach because of an inability to assign year when
calculating the prediction. In contrast, with the future-
year approach, assignment of stud × year in the pre-
dictor was straightforward; bulls simply received the
most recent year solution for their stud.

A total of 6 predictors were compared using the fu-
ture-year approach. The first 4 were the expanded ser-
vice sire term and service sire only predictors, each
with multiple services and first services only. The next
2 predictors both used stud × year, in place of stud, in
the model for estimation, but the first predictor also
included stud × year in the prediction, whereas the
second did not. Some AI companies have argued, in
effect, that stud effects should be removed from bull
fertility evaluations. Inclusion of stud × year in the
model for estimation implies that stud effects were par-
titioned out of all contributory factors (e.g., the SSR
term in model [2]) and thus did not contribute at all,
either directly or indirectly, to the predictions formed
by including stud × year in the model but not in the
predictor; the objective was to determine whether re-
moving stud effects did, in fact, improve predictions.
Service sire age in the future-year predictors was the
bull’s median age in the future-year data, calculated
as age at the beginning of the future year plus 6 mo.

Covariates Versus Categorical Variables for
Quantitative Factors Contributing to the Ex-
panded Service Sire Term. Simulation indicated that
if an effect (e.g., inbreeding) can be properly modeled
with covariates, then 1) there is no bias associated with
modeling quantitative factors as covariates, 2) there is
a very slight advantage in accuracy (0.16%) with the
use of covariates, and 3) within the realm of linear
models (i.e., models linear in the parameters), if the
factor cannot be properly modeled with linear or qua-
dratic covariates or both, then categorization of the
quantitative variables is generally preferred.

A fixed-effects model was used to determine the na-
ture of the relationship (linear, quadratic, or other) of
CR with service sire age, service sire inbreeding, and
inbreeding of the mating; cow_PE, breeding value, and
SSR were dropped from model [2] and service sire in-
breeding and age, and mating inbreeding were all cate-
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Table 1. Bulls used in calculation of comparative statistics in split-herd and future-year analyses: number
of bulls and, average number of matings and first services per bull

Matings for Matings in First services
Method Bulls, n estimation,1 n set-aside data,2 n for estimation, n

Split-herd3 442 2,171 2,091 1,008
Future-year 262 3,051 1,342 1,511

1Bulls were required to have a minimum of 500 matings to be included in the comparisons.
2Minimum of 500 matings in set-aside data required in the split-herd approach; only 100 required in the

future analysis.
3For the split-herd approach, numbers in table are averages across 10 replicates.

gorized and added to the model, along with stud, and
were fit as fixed effects. Categories were formed simply
by rounding actual values, for each variable, to the
nearest whole number. A maximum was also imposed
for each variable; thus, the highest category contained
all observations that were as large as or larger than
the indicated category number. Plots of the solutions
were used to ascertain relationships with CR.

Estimation of Heritability

Heritability was estimated from a sample of 40,953
cows, using calvings between January 2002 and July
2005. Herds were required to have a minimum of 20
breedings for each year and an average CR between 15
and 85% to be included. Bulls were required to have at
least 1,000 matings, in the overall data, to be included
in the sample. The model equation for estimation was
the same as model [2] except that service sire was used
in place of cow for the additive genetic term (“A”). Be-
cause threshold models model the underlying variable
rather than the observed variable (as in a linear model),
threshold model estimates of variance components are
generally larger than those from a linear model. Thus,
in contrast to the other analyses, heritability was esti-
mated from both a linear model and a threshold model
because estimates for heritability were expected to be
low. To reduce computing time, to improve convergence,
and for the sake of using a larger sample, a sire effect
was used for the threshold model, rather than an ani-
mal effect, as in the linear model. The numerator of
the heritability estimate for the threshold model was
therefore 4 times the estimated sire variance.

RESULTS AND DISCUSSION

The number of bulls and average number of matings
per bull in the split-herd and future-year analyses are
given in Table 1. Results for simulation and real data,
for all 4 statistics used to compare models, are shown
in Table 2.
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Simulation Results

In simulation, correlations of predictors with true
values (Table 2) showed clear advantages in accuracy
with the use of both multiple services and an expanded
service sire term. Using both multiple services and an
expanded service sire term maximized accuracy, which
had a total advantage of approximately 16% over the
predictor using first services only and service sire only
in the predictor. Use of all services increased accuracy
by 6% with the expanded service sire predictor and by
approximately 12% when service sire only was used.
Use of the expanded service sire term improved accu-
racy by approximately 4% when all services were used
and by roughly 10% when using first services only for es-
timation.

Mean differences were essentially zero for the ex-
panded service sire predictors. The mean differences
for the service sire only predictions, however, were
small but still different from zero. The reason for the
slight bias in the service sire only predictor was unclear.
Fortunately, however, the mean differences for the ser-
vice sire only predictor were, at most, only of tangential
interest in this research; the conclusion of primary in-
terest from the mean differences in simulation was that
the use of an expanded service sire term per se causes
no bias in the predictor. The standard deviation of dif-
ferences was also minimized by the use of an expanded
service sire term with multiple services. Thus, all re-
sults from simulation supported the use of both multi-
ple services and an expanded service sire term.

Quantitative Service Sire Components (Inbreeding,
Age) as Covariates or Categorical Variables

A plot of the CR solutions for each quantitative factor
in the expanded service sire term is given in Figure 1.
Mating inbreeding (plots A and B) exhibited a clear
linear relationship with CR, especially in plot B of only
the first 12 categories, which excluded small group
sizes. Thus, mating inbreeding was fit as a linear covari-
ate only in all analyses. Solutions for service sire in-
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Table 2. Comparisons of predictions to true service sire (SSR) conception rate (CR) in simulation and average CR in set-aside data (real
data: split-herd, future-year approaches)

Correlation Mean difference SD of difference Chi-square1

All 1st service All 1st service All 1st service All 1st service
Method Predictor services only services only services only services only

Simulation2 Expanded 87.2 81.0 −0.01 −0.01 1.50 1.79 — —
SSR only 83.0 71.4 0.35 0.35 1.71 2.15 — —

Split-herd3 Expanded 56.1 45.5 −1.17 −0.42 2.84 3.25 9,991 12,610
SSR only 44.0 37.5 0.21 0.80 3.03 3.12 7,649 11,001

Future-year Expanded 32.1 29.4 0.92 0.97 3.53 3.56 5,116 5,972
SSR only 29.3 23.6 1.14 0.64 3.58 3.63 6,027 5,177
Expd SY 38.1 — 0.22 — 3.42 — 3,525 —
Expd no SY 31.6 — 0.41 — 3.51 — 3,496 —

Split-herd Age, Covar 46.2 — 0.14 — 2.99 — 6,922 —
Age, Catgl 55.2 — −1.23 — 2.86 — 10,196 —
SSR F 45.2 — 0.17 — 3.01 — 7,436 —
Mating F 45.1 — 0.20 — 3.01 — 7,516 —
Stud 45.1 — 0.01 — 3.01 — 6,985 —

1Average across bulls.
2Predicted CR computed as expanded: ssfA + ssfB + ssr; SSR only: ssr, where ssfA, ssfB, and ssr were solutions for the contributory factors

(ssfA, ssfB) and for the service sire term, respectively.
3Predicted CR computed as expanded: b1×FMtg + b2×FSSR + age + stud + ssr; SSR only: ssr; Expd SY: b1×FMtg + b2×FSSR + age + stud ×

year + ssr [same as expanded but with stud-year (SY) instead of stud]; Expd No SY: b1×FMtg + b2×FSSR + age + ssr (stud-year in model for
estimation, but not in predictor); Age, Covar: bA×AgeYear + ssr; Age, Catgl: age + ssr; SSR F: b2×FSSR + ssr; Mating F: b1×FMtg + ssr; Stud:
stud × year + ssr, where b1 and b2 were solutions for linear regressions of conception on mating inbreeding (FMtg) and SSR inbreeding (FSSR);
age, stud, stud × year, and ssr were solutions for their respective (categorical factors), AgeYear was the bull’s actual age in years.

breeding (plots C and D) were more erratic, but overall
its relationship with CR appeared to be linear as well.
Plot D of service sire inbreeding solutions, which used
only categories 2 through 10 (the majority of matings
and bulls), showed a clear linear trend. Thus, service
sire inbreeding was fit only as a linear covariate as
well. The relationship of CR with service sire age (plot
E), however, was clearly not linear or quadratic. Service
sire age was therefore considered as a categorical vari-
able and, for comparison, as a covariate as well.

Field Data: Correlations Between Predictors
and Average CR in Set-Aside Data

With field data, the correlations (Table 2) of predicted
CR with average CR in the set-aside data were clearly
highest with the use of multiple services and the ex-
panded service sire term. In the split-herd approach,
multiple services resulted in correlations that were
10.6% (expanded predictor) and 6.5% (service sire only)
higher than with first service only; multiple services
resulted in 3 and 6% higher correlations in the future-
year approach. Considering the stud × year predictor
from the future-year analysis (Expd SY in Table 2), the
expanded service sire predictions had an advantage of
approximately 9% in correlation over the service sire
only predictor and an advantage of approximately 12%
in the split-herd approach. Overall, the split-herd anal-
ysis indicated an increase of nearly 20% in accuracy
with the use of multiple services and an expanded ser-
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vice sire term, relative to the case of service sire only
using first services only, as in the evaluation currently
used; the future-year analysis showed a total advantage
in correlation of 15%.

As shown by the correlations from the future-year
analyses (Expanded vs. Expd SY in Table 2), stud ×
year is much preferred over stud alone, in spite of the
fact that the estimation data covered only 3 yr. The
expanded predictor using stud × year was 6% more
accurate than the predictor using only stud. Further-
more, when stud × year was in the model for estimation
but was not included in the predictor, accuracy was
6.5% lower than when stud × year was included in the
predictor. Thus, a complete removal of stud effects from
predictions of service sire fertility would substantially
reduce the accuracy of evaluation.

The individual contribution of each contributory fac-
tor can be assessed by comparing the split-herd correla-
tions at the bottom of Table 2 to the SSR only split-herd
correlation in Table 2. Correlations for the individual
factors showed that service sire age at mating was, by
far, the major factor contributing to improved predic-
tion. The correlation for age fit as a categorical variable
was 11% higher than the correlation for the service sire
only predictor. Although predictors with only service
sire inbreeding, mating inbreeding, or stud in the ex-
panded term also improved accuracy, their correlations
were only approximately 1% higher than the predictor
using service sire only. Nonetheless, in spite of their
much more modest contribution, their use in an ex-
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Figure 1. Plots of conception rates (CR) versus factors for consideration in an expanded service sire term: inbreeding (F) of the mating,
inbreeding of the service sire (SSR), and SSR age at mating.

panded service sire term will still improve accuracy
and should therefore be included in future predictors.
Furthermore, the improvement attributed to stud is
an underestimate because stud × year is the preferred
variable, as indicated by the future-year results. Re-
sults for the individual factors also showed a clear pref-
erence for fitting age at mating as a categorical variable
rather than as a covariate. Correlation with average
CR in the set-aside data was 9% higher when age was
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fit as a categorical variable rather than as a covariate.
The contribution of service sire age may also be some-
what underestimated in the split-herd results because
a bull’s average age in the estimation data was used to
compute his prediction, although his age could have
spanned several categories in the set-aside data, which
had a 12-yr span.

There are several characteristics of the split-herd and
future-year correlations in Table 2 which, although not
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Table 3. Number and percentage of bulls in each service sire age
group, for bulls included in the comparisons for the split-herd and
future-year approaches

Service Split-herd Future-year
sire age
group Bulls, n Bulls, % Bulls, n Bulls, %

1 186 42.0 0 0.0
2 92 20.8 0 0.0
3 8 1.9 5 1.9
4 5 1.2 2 0.8
5 107 24.2 1 0.4
6 37 8.5 36 13.7
7 3 0.7 51 19.5
8 2 0.4 67 25.6
9 1 0.3 40 15.3
10 0 0.0 30 11.5
11 0 0.0 17 6.5
12 0 0.0 13 5.0

of direct relevance to the objectives of this research,
warrant some explanation. Perhaps the most noticeable
aspect is that, overall, the future-year correlations were
just lower in magnitude than the split-herd correla-
tions. This was because bulls were required to have
only 100 matings in the set-aside data for the future-
year comparisons (to increase the number of bulls in-
cluded), whereas bulls were required to have 500 mat-
ings in the set-aside data for the split-herd approach.
As can be seen in Table 1, bulls averaged approximately
700 fewer matings in the set-aside data for the future-
year approach compared with the split-herd approach.
When bulls were required to have only 100 matings in
both data sets for both approaches, the correlations
for the 2 different approaches were of more similar
magnitude. Another apparent peculiarity was that the
future-year approach generally showed less advantage
than the split-herd approach. This was due to the inher-
ent characteristic of the future-year approach to include
predominantly older bulls, which is illustrated in Table
3. In the future-year analysis, there were no bulls in
the first (youngest) 2 age groups and only 8 total bulls
in the next 3 age groups and, as was indicated in Figure
1, fertility changes the most across the first 5 age
groups. In contrast, in the split-herd analyses there
was a much better distribution of bulls across the first
5 age groups. Thus, the advantages found in the future-
year analysis were lower mainly because service sire
age, the major factor contributing to improved accuracy,
was unable to make as much of a contribution in the
future-year analysis.

The future-year approach also showed less advantage
for multiple services than the split-herd approach,
which was due to the number of services available for
estimation in the 2 different approaches. The amount
of advantage will decrease as the number of services
increases; a bull with 5,000 first services, for example,
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will benefit less from the use of multiple services than
a bull with 500 first services. As can be seen in Table
1, bulls used for analysis averaged approximately 1,500
first services in the future-year approach but only ap-
proximately 1,000 first services in the split-herd analy-
ses. As a further illustration, 68% of the bulls had 1,000
or fewer first services in the split-herd analyses,
whereas only 54% of the bulls had 1,000 or fewer ser-
vices in the future-year analyses. Thus, there was sim-
ply less room for benefit of multiple services in the
future-year approach than in the split-herd approach.
In spite of the differences in magnitudes of correlations
between the split-herd and future-year approaches, the
future-year analyses served their purpose: 1) they con-
firmed the general results found in the split-herd analy-
ses (both analyses showed higher correlations with an
expanded service sire term and multiple services) and
2) they distinguished between the variables stud and
stud × year.

Field Data: Mean Differences, Standard Deviations
of Differences, Chi-Square Statistics

Mean differences (Table 2) indicated general
agreement between predictors and average CR in the
set-aside data. Differences were generally close to zero
(favorable), usually less than 1% and often less than
0.5%. The most noticeable mean difference was that
for the expanded service sire predictor using multiple
services in the split-herd approach, which was −1.17.
As indicated by the mean differences for the individual
factors (split-herd approach), this “larger” (larger in
magnitude) mean difference was due to service sire age
at mating. The larger mean difference associated with
service sire age occurred in the split-herd approach only
and was due to the necessity of assigning bulls only 1
particular age in their predictor, although their average
CR in the set-aside data could span up to 12 yr. For a
bull that began his progeny test in 1995, was made
active in, for example, 2000, and then remained in ac-
tive service for 3 or 4 yr, the majority of his matings
would generally be after he was made active (after 5
yr of age), where, as was shown in Figure 1, higher
fertility exists. His average age, however, would put
him at a midpoint age and he would therefore be under-
predicted, relative to his average CR in the set-aside
data. The mean difference of only 0.22 (essentially zero),
for the expanded service sire predictor using stud ×
year in the future-year analysis, confirms that service
sire age does not, in fact, cause a bias and that the
result from the split-herd analysis was indeed due to
the inability to adequately assign age in the predictor
for all bulls in the split-herd approach.
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Table 4. Solutions for contributory factors from the future-year analysis

Inbreeding Stud

Bull Mating Year A B C D E F

−0.00123 −0.00152 2002 0.027 0.029 0.035 0.010 0.007 0.015
2003 0.000 −0.003 0.003 −0.003 0.003 −0.013
2004 −0.007 0.002 −0.001 −0.002 0.013 −0.020

Standard deviations of differences (square roots of
mean square errors) and the chi-square statistics were
also generally minimized with the expanded service
sire term and multiple services. The larger chi-square
statistic for the expanded service sire predictor using
all services in the split-herd analysis, relative to the
service sire only predictor (9,991 vs. 7,649), was due to
the larger mean difference for the expanded predictor,
discussed previously. In the future-year analysis, there
was essentially no difference in chi-squares for the pre-
dictors with and without stud × year included (3,525
vs. 3,496). Simulation indicated that this statistic ap-
pears to be much more sensitive to mean differences
than to differences in correlation, and the mean differ-
ences for these 2 predictors were nearly the same.

Solutions for Contributory Factors

Solutions from the future-year analysis with stud ×
year in the model are shown in Tables 4 and 5. Concep-
tion rate decreased about 0.1% for every 1% increase
in both service sire inbreeding and mating inbreeding.
The result for mating inbreeding in this research was
nearly identical to that of Cassell et al. (2003). The stud
× year solutions are listed for only the 6 most widely
used studs (5 US, 1 Canadian) in the US. The range in
these stud solutions was 2.8, 1.7, and 3.3% for years
2002 to 2004, respectively. There was also considerable

Table 5. Solutions for service sire age group from the future-year
analysis with number of bulls and matings used for estimation

Service
sire age
group Solution Bulls,1 n Matings, n

1 −0.018 3,090 203,037
2 −0.016 4,419 262,266
3 −0.008 1,580 22,972
4 −0.002 681 6,094
5 0.018 1,026 139,765
6 0.013 1,275 320,901
7 0.009 1,139 258,752
8 0.006 901 158,099
9 0.001 626 98,657
10 0.002 426 41,129
11 −0.002 344 17,249
12 0.002 753 33,104

1Bulls counted in each age group to which they contributed.
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year-to-year variation within stud, which reflects the
superiority of the stud × year variable over stud alone
for prediction of bull CR. Although difficult to discern
from Table 4, there is likely a correlation of stud effects
across year. Future research could consider fitting a
block diagonal variance-covariance matrix for stud ×
year effects, allowing stud effects across year to be cor-
related. Such a model may further improve accuracy of
the stud × year solutions, and subsequently of bull CR
predictions, by allowing additional years to contribute
to the final year estimate.

Solutions for bull age effects (Table 5) were consistent
with plot E in Figure 1. Fertility increased up to age
5, was maximum at 5 yr of age, and then decreased
somewhat up to approximately age 9 or 10. These re-
sults also suggest that 9 categories may be sufficient
for bull age. In fact, an expanded model was tested
using only 9 categories for age, and results were nearly
identical to those using 12 age groups; this is also con-
sistent with Figure 1 (plot E), which showed that CR
plateaued with increasing age around age group 9 or 10.

Several older studies on bull age were reviewed in
Salisbury et al. (1978) and generally supported the pat-
tern of results in Table 5. VanDemark et al. (1956)
reported that volume of semen increased through the
first 4 yr and that sperm concentration was maximized
in the second and third year, with only slightly lower
concentrations in the fourth year. Hahn et al. (1969)
found that several semen characteristics were better in
younger bulls than in older bulls. Tanabe and Salisbury
(1946) reported peak AI bull fertility at 2 yr of age,
whereas Bishop (1970) reported peak fertility at some-
what older ages of 3 to 4 yr. In general, the early re-
search on bull age effects on fertility support the general
pattern illustrated in Table 5 and Figure 1 (plot E),
which is increasing fertility to an age of 3 to 5 yr, fol-
lowed by some decline thereafter. Taylor et al. (1985)
provided perhaps one of the more extensive studies on
the effect of bull age at the time of collection. They
also found the general pattern of increasing CR with
increasing age, followed by a decline after reaching a
maximum. They observed a maximum, however, at
ages of approximately 19 to 20 mo; their sample sizes
were quite small, however, for ages of 4 yr or less and
thus estimates were probably subject to a nontrivial
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amount of sampling error. Results of Taylor et al. (1985)
for bull ages 8 and greater were variable. There ap-
peared to be some continued decline in fertility after 8
yr of age but at a substantially lower rate than the
decline from ages 5 to 8 yr.

It should be emphasized that “bull age” in this re-
search refers to age of the bull at the time of mating,
not age when the semen, used for insemination, was
collected; bull age at the time of mating is the only
information currently available in the AIPL database.
Thus, bull age at mating may have been 10 yr, but
semen collected when the bull was 8 or 9 yr old, for
example, may have been used in the mating. In spite of
this caveat, results for bull age in Table 5 are generally
consistent with previous research, and, more im-
portant, results in Table 2 clearly showed marked im-
provement in predictions when bull age at mating was
used in the predictor. At the same time, however, it is
worthwhile to bear in mind that more detailed data
collection could possibly lead to yet further improve-
ment in predictors. In particular, bull age at the time
of collection may improve the accuracy of prediction
even more than bull age at mating. It is conceivable
that information on date of collection could also improve
the accuracy of the stud × year term; “year” is currently
year of mating, but year of collection may provide a
more accurate prediction. Routine acquisition of date
of collection for the semen used in the mating is not in
the foreseeable future for the United States. However,
Select Sires, for example, has recently announced bar
coding of semen straws (Dickrell, 2007) and such tech-
nology may enhance the possibility of acquiring collec-
tion dates in the future. In any event, routine collection
of the more detailed information is encouraged while,
in the meantime, bull age at mating will serve as a
useful variable for improving the accuracy of predic-
tions of bull CR.

Heritability

Heritability estimates were 0.02 and 0.013% (i.e., es-
sentially zero) from the linear and threshold models,
respectively. It is likely that screening of bulls on semen
characteristics measured by lab assays, along with pos-
sible modification of sperm concentrations based on
compensable semen traits, eliminates (from AI bull fer-
tility) any genetic variation that may exist in the popu-
lation. Sperm morphological characteristics, for exam-
ple, could perhaps have at least a low or even moderate
heritability, but elimination of defective bulls would
eliminate most, if not all, genetic variance for the trait.

It may be important to compare estimates of herita-
bility for AI bull fertility by using data from the same
time period and population. If processing and screening
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practices used by AI organizations do, in fact, affect
heritability of AI bull fertility, then these practices may
vary by location and over time as methods for screening
or processing improve over time. Estimates of AI bull
fertility in the literature, however, appear to be sparse,
especially for the United States. Stålhammar et al.
(1994) estimated young bull fertility by using nonreturn
rates, primarily on first service, where data for their
Swedish Red and Whites and Swedish Friesians
spanned the years 1981 to 1985. Although somewhat
higher than the estimates from this study, their esti-
mates of heritability, ranging from 0.1 to 0.6%, were
still quite low. Several older studies (e.g., Murray et
al., 1977; Hansen, 1979) obtained somewhat higher es-
timates of “heritability,” but it is unclear whether the
additive genetic component was truly separated from
the bull’s environmental component in those studies.

Estimates of total service sire variance provide an
upper limit on heritability because they will include
both genetic and nongenetic factors. Weigel (2004) esti-
mated service sire variance for US Holstein AI bulls at
0.3% using a threshold model. This recent estimate
using US data is consistent with the very low heritabil-
ities found in this research. Given estimates of essen-
tially zero for heritability, future predictors will not
attempt to use a genetic term for prediction of US AI
bull fertility.

CONCLUSIONS

Use of both multiple services and an expanded service
sire term that includes the effects of service sire age at
mating, service sire inbreeding, mating inbreeding, and
stud × year will improve accuracy of prediction of US
AI bull fertility. Mean differences between predictors
and average CR in set-aside data indicate that these
improvements can be made without introducing bias.
Improvements in accuracy depend on the number of
services available for the bull, but even for bulls with
at least 500 breedings, a minimum overall increase in
accuracy of approximately 20% can be expected. Herita-
bility of AI bull fertility in the United States is nearly
zero; therefore, use of an additive genetic effect for the
service sire will not be of assistance in prediction of
bull CR. Future research on prediction of bull fertility
will include a comparison of linear and threshold mod-
els, methods to deal with services where the outcome
is not known with certainty, edits and modeling of nui-
sance variables, and perhaps models that allow the
service sire (residual) effect to vary across time.
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