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  ABSTRACT 

  Genomic evaluations for 161,341 Holsteins were com-
puted by using 311,725 of 777,962 markers on the Il-
lumina BovineHD Genotyping BeadChip (HD). Initial 
edits with 1,741 HD genotypes from 5 breeds revealed 
that 636,967 markers were usable but that half were 
redundant. Holstein genotypes were from 1,510 animals 
with HD markers, 82,358 animals with 45,187 (50K) 
markers, 1,797 animals with 8,031 (8K) markers, 20,177 
animals with 6,836 (6K) markers, 52,270 animals with 
2,683 (3K) markers, and 3,229 nongenotyped dams 
(0K) with >90% of haplotypes imputable because they 
had 4 or more genotyped progeny. The Holstein HD 
genotypes were from 1,142 US, Canadian, British, and 
Italian sires, 196 other sires, 138 cows in a US Depart-
ment of Agriculture research herd (Beltsville, MD), and 
34 other females. Percentages of correctly imputed gen-
otypes were tested by applying the programs findhap 
and FImpute to a simulated chromosome for an earlier 
population that had only 1,112 animals with HD geno-
types and none with 8K genotypes. For each chip, 1% 
of the genotypes were missing and 0.02% were incorrect 
initially. After imputation of missing markers with find-
hap, percentages of genotypes correct were 99.9% from 
HD, 99.0% from 50K, 94.6% from 6K, 90.5% from 3K, 
and 93.5% from 0K. With FImpute, 99.96% were cor-
rect from HD, 99.3% from 50K, 94.7% from 6K, 91.1% 
from 3K, and 95.1% from 0K genotypes. Accuracy for 
the 3K and 6K genotypes further improved by approxi-
mately 2 percentage points if imputed first to 50K and 
then to HD instead of imputing all genotypes directly 
to HD. Evaluations were tested by using imputed ac-

tual genotypes and August 2008 phenotypes to predict 
deregressed evaluations of US bulls proven after August 
2008. For 28 traits tested, the estimated genomic re-
liability averaged 61.1% when using 311,725 markers 
vs. 60.7% when using 45,187 markers vs. 29.6% from 
the traditional parent average. Squared correlations 
with future data were slightly greater for 16 traits and 
slightly less for 12 with HD than with 50K evaluations. 
The observed 0.4 percentage point average increase in 
reliability was less favorable than the 0.9 expected from 
simulation but was similar to actual gains from other 
HD studies. The largest HD and 50K marker effects 
were often located at very similar positions. The single-
breed evaluation tested here and previous single-breed 
or multibreed evaluations have not produced large 
gains. Increasing the number of HD genotypes used for 
imputation above 1,074 did not improve the reliability 
of Holstein genomic evaluations. 
  Key words:    genomic evaluation ,  imputation ,  marker 
density 

  INTRODUCTION 

  High-density (HD) genotypes provide markers closer 
to QTL, but missing alleles must then be imputed for 
animals genotyped at less than the highest density. 
Observed and imputed genotypes from chips of various 
marker densities are combined in 1 genomic evaluation 
to reduce costs and improve reliability. Many methods 
and programs are available to impute the missing geno-
types, but programs developed for human genotypes 
often do not scale to the large data sets and general 
pedigrees in animal breeding (Chen et al., 2011; John-
ston et al., 2011; Williams et al., 2012). 

  Simulations have forecast that increasing density 
much greater than 50,000 markers (50K) will give 
either no gains in evaluation reliability (Harris and 
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Johnson, 2010), very small gains (VanRaden et al., 
2011b), or large gains (Meuwissen and Goddard, 2010). 
Benefits from HD genotypes may be small if most ge-
netic variation is from very small QTL effects (Clark et 
al., 2011). Imputation losses can also affect evaluation 
reliability if an insufficient number of animals have HD 
genotypes. Few studies have investigated the ability to 
impute from very low to very high density. Imputation 
of sequence data is now common in human genetics but 
is not yet common with bovines because of the limited 
number of full sequences available. Before investing in 
data collection, realistic simulations are useful in op-
timizing designs and developing efficient methods of 
analysis.

Two HD genotyping chips for cattle are currently 
available (Rincon et al., 2011): the BovineHD Geno-
typing BeadChip from Illumina (San Diego, CA) and 
the Axiom Genome-Wide BOS 1 Array Plate from 
Affymetrix (Santa Clara, CA). Early actual results 
with BovineHD genotypes in other populations have 
indicated small or no advantages in evaluation reliabil-
ity as compared with 50K. Across-breed evaluations of 
Holsteins and Jerseys found no benefit from HD com-
pared with 50K in New Zealand (Harris et al., 2011) or 
small benefits for Bayesian predictions that were not 
significant because of only 86 Jersey validation bulls in 
Australia (Erbe et al., 2012); the conclusion was that 
the 777,962 markers could be reduced to 329,329 by 
eliminating redundant markers (Harris et al., 2011) 
or to 58,532 by using markers only within transcribed 
DNA (Erbe et al., 2012). Reliability in the joint ge-
nomic evaluation of Denmark, Finland, and Sweden 
improved by an average of 0.5 percentage point when 
using 557 Holstein HD genotypes and by 1.0 percentage 
point when using 706 Red Dairy Cattle HD genotypes 
in separate within-breed analyses (Su et al., 2012). 
The use of HD genotypes for 384 Norwegian Red bulls 
increased correlations of predicted with observed data 
for milk, protein, and a mastitis trait by 7 to 9 percent-
age points but showed little or no increase for 4 other 
traits (Solberg et al., 2011). Those studies all tested 
the ability to predict merit of a recent generation of 
genotyped bulls by using genotypes and phenotypes of 
earlier generations.

Lower density chips have become widely used re-
cently, particularly for genotyping of females. Three 
different densities <50K are now included in the North 
American genotype database. The Illumina Bovine3K 
BeadChip with 2,900 markers was introduced in August 
2010 (Wiggans et al., 2012a) and was then replaced 
in November 2011 by the Illumina BovineLD Bead-
Chip with 6,909 markers (Boichard et al., 2012). The  
GeneSeek Genomic Profiler (GGP), a customized ver-
sion of the BovineLD chip with additional markers total-

ing 8,655, became available in February 2012 (Wiggans 
et al., 2012b). More animals are now genotyped at those 
lower densities than at 50K or HD. Accuracies for all 
densities should be optimized in genomic evaluations.

The objectives of this study were to examine 1) data 
quality, marker selection, and mapping issues using 
1,741 BovineHD genotypes; 2) the accuracy of imput-
ing HD from 50K and lower density genotypes; 3) the 
accuracy of imputing between HD and sequence data 
or between 2 different HD chips; 4) the effect of the 
number of Holstein HD genotypes used for imputation 
on within-breed evaluation; and 5) the reliability of HD 
genomic predictions in a very large Holstein population.

MATERIALS AND METHODS

Markers and Chips

Five densities of actual genotypes from Illumina were 
used in this study. The BovineHD chip contains 777,962 
markers, including 1,509 on the Y chromosome and mi-
tochondrial DNA, and is referred to here as HD. The 
BovineSNP50 v1 chip with 56,947 markers and v2 chip 
with 54,609 markers are both referred to here as 50K. 
The commercial v1 chip reported 54,001 of the 56,947 
markers used here in the research v1. For simplicity, 
the GGP, BovineLD, and Bovine3K chips are referred 
to here as 8K, 6K, and 3K, respectively. The chips were 
designed as mostly nested subsets: the HD chip includes 
91% of the 50K v2 markers, the 50K has 99% of the 8K 
markers, the 8K has 100% of the 6K markers, and the 
6K has 75% of the 3K markers.

Edits for marker quality were automated because vi-
sual inspection of genotype clusters for each marker is 
too time consuming with HD chips. With the 50K, 8K, 
6K, or 3K genotypes, cluster positions were hand ad-
justed to improve call rates and reduce parent-progeny 
conflicts. Markers on the HD chip were subjected to the 
same initial edits as on each other chip, which required 
a minor allele frequency (MAF) of >0.01 for at least 
1 breed, a pooled test of within-breed Hardy-Weinberg 
equilibrium (HWE), <10% missing genotypes, and 
<2% parent-progeny conflicts; the 2 latter limits are re-
duced proportionally to MAF (Wiggans et al., 2012a). 
Observed heterozygotes were required to be between 
0.3 and 1.3 times the expected number. Observed mi-
nor homozygotes were required to be between 0.1 and 
10 times the expected number.

Redundant markers were eliminated by using a total 
of 1,741 HD genotypes from animals of 5 breeds, whereas 
only 1,510 HD genotypes of Holsteins were used to test 
the genomic evaluation because of having too few HD 
genotypes for imputation in most of the other breeds. 
The numbers of individuals with HD genotypes used for 
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marker selection were 434 Ayrshire, 71 Brown Swiss, 
61 Guernsey, 63 Jersey, and 1,112 Holstein. Markers 
were ordered by chromosome number and location on 
the chromosome from the UMD3.1 genome assembly 
(Center for Bioinformatics and Computational Biology, 
2010).

Each marker was compared with the subsequent 349 
markers on the chromosome assembly by using counts 
of the combinations of genotypes observed for each 
marker pair, and correlations were computed by using 
genotypes coded as BB = 0, AB = 1, and AA = 2. 
Pairs of loci were designated as redundant if the abso-
lute value of the correlation exceeded 0.95 + 0.1 (0.5 
− MAF) or if 95% + 10% (0.5 − MAF) of the animals 
had consistent calls. Thus, the threshold was raised 
linearly from 95 to 99 as the MAF decreased toward 
0. If the correlation was positive, consistent calls were 
those for which both markers had AA, both had AB, 
or both had BB. If negative, consistent calls were those 
for which both markers had AB or opposite homozy-
gotes. These edits were applied only to marker pairs 
for which at least 1 had MAF >0.05. In many cases, a 
group of nearby markers was mutually redundant. One 
was selected from each group, giving preference to the 
markers used for international parentage verification 
first and SNP on the BovineSNP50 chip second. The 
marker of the preferred type with the highest call rate 
was retained.

Map locations must be correct for imputation to work 
well. Several 50K markers were previously relocated in 
cooperation with researchers from the University of 
Missouri (R. D. Schnabel), the University of Maryland 
(J. R. O’Connell), and the University of Guelph (M. 
Sargolzaei and J. Johnston), but locations of HD mark-
ers had not yet been tested. Potential problems were 
identified from the largest counts of different haplo-
types within 50-marker windows of usable HD SNP. 
Genotype correlations were then inspected visually by 
using heat maps within those segments. Instead of at-
tempting to find correct locations on the UMD3.1 map, 
misplaced HD markers were simply deleted.

After edits, the numbers of markers used from each 
chip were 311,725 from the HD, 45,187 from the 50K, 
8,031 from the 8K, 6,836 from the 6K, and 2,683 from 
the 3K. Nongenotyped dams (0K) were also included if 
>90% of haplotypes were imputable because the cow 
had ≥4 genotyped progeny. For HD evaluations, all 
densities were imputed to HD. For 50K evaluations, all 
densities were imputed to 50K and only the 50K subset 
of HD was included.

Animals Genotyped and Phenotyped
A total of 161,341 Holsteins had genotypes used in 

the genomic evaluation, including 65% females and 35% 

males. The numbers of animals genotyped with each 
density were 1,510 with HD, 82,358 with 50K, 1,797 
with 8K, 20,177 with 6K, 52,270 with 3K, and 3,229 
imputed dams with 0K. The 1,510 HD genotypes were 
from 305 US, 93 Canadian, 284 British, 460 Italian, 
and 196 other sires, from 138 cows from a US Depart-
ment of Agriculture (Beltsville, MD) research herd, and 
from 34 other females. The markers were selected us-
ing genotypes for a subset of 109,205 animals available 
before the 6K and 8K chips were marketed.

Four evaluation studies were conducted with Holstein 
data. Three preliminary tests used earlier actual data 
sets and fewer animals with HD genotypes to impute 
the missing markers in low-density genotypes. The first 
study (December 2010 data) included only 342 HD ani-
mals but with 636,967 of the markers used (VanRaden 
et al., 2011a). The second and third studies (August 
2011 data) both included 1,074 HD animals after add-
ing genotypes from Great Britain. The second study 
computed evaluations using 636,967 markers, whereas 
the third used 311,725 markers to verify that results 
would be the same after eliminating redundant markers. 
The fourth (final) study was conducted with December 
2011 data after adding genotypes from Italy and used 
1,510 HD animals for imputation of the other 159,831 
animals that had genotypes of lower density.

Genomic evaluations were computed for 28 traits us-
ing August 2008 data to predict December 2011 dere-
gressed evaluations of 3,404 US bulls proven after 2008. 
Almost all those bulls had 50K genotypes. Observed 
reliability would be lower for animals genotyped with 
less density, or slightly higher if genotyped with HD to 
avoid imputation loss. The truncated reference popula-
tion included 10,718 bulls with daughters and 5,124 
cows with records. The reference cows had a mixture 
of genotype densities, but all had US yield trait phe-
notypes before August 2008. The reference bulls were 
from the combined genomic data of the United States, 
Canada, Italy, and Great Britain plus additional proven 
bulls from 15 other countries.

Imputation to HD from 50K, 6K, and 3K genotypes 
was tested by using a simulated chromosome with 1% 
of the genotypes randomly missing and 0.02% incor-
rect initially from each chip. To introduce incorrect 
genotypes, true homozygotes were set to observed het-
erozygotes and true heterozygotes were set to an even 
mixture of the 2 homozygotes. The simulation program 
(genosim.f90) and the methods of VanRaden et al. 
(2011b) generated linkage disequilibrium (LD) directly 
in chromosomes of the founding population (oldest 
members of the pedigree). Advantages are speed and 
simple control of allele frequencies as compared with 
strategies that require many generations of random 
mating followed by a marker selection step. A disad-
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vantage is that the LD pattern may not mimic real 
data as well.

The parameter controlling correlation structure and 
LD in the founding population was set to 0.998 as in 
VanRaden et al. (2011b) for the 500,000 marker density. 
Underlying haplotype blocks ended between markers 
whenever a uniform random number exceeded the pa-
rameter. Underlying alleles were converted to observed 
alleles by using founding allele frequencies that were 
uniform between 0 and 1. Descendant chromosomes 
were created using a random recombination of parental 
chromosomes with no suppression of nearby crossovers.

The simulated pedigree and genotyping pattern ex-
actly matched the earlier subset of actual data from 
August 2011 (the third study above) before the HD 
genotypes for Italian bulls were added. In the simulated 
data, unique chromosomes were assigned to unknown 
parents, whereas in actual populations, their chromo-
somes may be inherited from popular ancestors whose 
pedigree connection was not recorded. Therefore, for 
animals with incomplete pedigrees, imputation accu-
racy may be reduced in the simulated data compared 
with the actual data. However, other factors, such as 
incorrect pedigrees or remaining map problems, can 
reduce the accuracy in actual data as compared with 
simulated data.

When the simulation was conducted, actual Bo-
vineLD and GGP genotypes were not yet available and 
exact numbers of markers were not yet known, so only 
5,130 markers were included in the imputation test for 
6K genotypes, and 8K was not tested. The simulation 
generated 6K genotypes for 1,000 animals chosen ran-
domly from the 39,441 that actually had 3K genotypes. 
In this imputation test, genotypes were simulated for 
116,380 animals: 1,112 HD, 72,532 50K, 1,000 6K, 
38,441 3K, and 3,295 0K (imputed dams). Among all 
animals, 89.9% of genotypes were missing initially.

Future Scenarios

Imputation between 2 different HD chips was tested 
to determine how many animals needed to be geno-
typed with both chips to provide sufficient overlap and 
how many needed to be genotyped with just 1 chip to 
reduce costs. The design had 61,615 animals with 50K 
genotypes and also included 1,000 genotypes from each 
HD chip. The bulls were ranked by highest reliability 
and the first n were double genotyped and the next 
2,000 − 2n bulls were assigned alternately to chip 1 
or chip 2, where n = 0, 50, 200, or 500. Thus, total 
expense was constant at 2,000 genotypes but with more 
or less overlap. The simulated chips each had 625,000 
markers with 50,000 in common, for a total of 1.2 mil-
lion. The parameter controlling LD was increased to 

0.999. The Illumina BovineHD and Affymetrix BOS 1 
chips have 107,945 markers in common, including those 
on the Illumina BovineSNP50 chip plus approximately 
60,000 others. When this research was conducted, we 
were unaware of the 60,000 others in common or that 
only 311,725 HD markers would be used because of 
redundancy.

Sequence data also were simulated and imputed from 
genotypes based on 600,000 (600K) markers to test 
feasibility. The parameter controlling LD was increased 
to 0.9998 for 30 million marker (sequence) density. Al-
lele frequencies in the founding population remained 
uniform between 0 and 1, but actual sequences would 
contain more low-MAF SNP than those selected to be 
placed on chips. The 500 bulls with the most daughters 
and with US registration codes had simulated sequenc-
es, and 500 randomly chosen US bulls born in 2009 had 
simulated 600K genotypes. Several generations some-
times separated the young bulls with 600K genotypes 
and the sequenced old bulls because the average birth 
year of the old bulls was 1987.

The sequences were simulated to contain 1 million 
polymorphic loci per chromosome; monomorphic loci 
were not generated and not needed. Only 1 chromo-
some was simulated instead of 30. Phasing and imputa-
tion of actual sequences both use genotypes as input 
data even though the sequences are originally read as 
haplotypes, because the read lengths are too short to 
reconstruct the long haplotypes directly. Individual 
animals are often sequenced at low coverage to reduce 
cost, but this research assumed high coverage per bull 
and that sequence genotypes were as accurate as chip 
genotypes. The goal was to examine computational fea-
sibility rather than to forecast gains in reliability from 
sequence data.

Imputation and Evaluation Software

The programs findhap (VanRaden et al., 2011b) and 
FImpute (Sargolzaei et al., 2011) were tested for im-
putation of HD data. Both programs use deterministic 
methods to combine family and population informa-
tion. Version 2 of findhap (VanRaden, 2011), which has 
improved imputation rates compared with version 1, 
uses both long segments to improve haplotype matches 
for close relatives and short segments to help detect 
matches from more remote ancestors. Several combina-
tions of segment lengths were tested in findhap. The 
FImpute program also was modified recently to allow 
processing of HD genotypes. Population imputation is 
based on overlapping sliding windows and assumes that 
individuals are related to some degree. Overlapping 
of windows allows for consistency of haplotype phases 
across windows. The FImpute program also starts with 
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a long window and gradually shrinks the window size in 
each sweep to a very short window.

Initial research showed improvements in imputation 
accuracy by combining results from 2 software packages 
(Johnston et al., 2011) or imputing genotypes in steps 
(first imputing 3K to 50K and then imputing 50K to 
HD) instead of doing all imputation in 1 step. For a 
simulated chromosome with 1,112 HD animals, final 
comparisons were carried out using findhap in 1 step, 
FImpute in 1 step, or FImpute in 2 steps (imputing 
lower densities to 50K and then 50K to HD). For actual 
data, the 3 preliminary evaluations were conducted us-
ing FImpute from lower density to 50K and findhap 
from 50K to HD. The final evaluation used imputed 
genotypes from FImpute in 1 step.

Genomic evaluations were computed by iteration 
for marker effects using both the linear model and the 
approximate Bayes A algorithm of VanRaden (2008). 
The exponential distribution by VanRaden contained 
a typographical error and should have shown that the 
normal variable was divided by 1.25[abs(s) − 2], where s is 
the standard deviation of marker deviations such that 
estimated effects are decreased if standard deviations 
are <2 and increased if standard deviations are >2 as 
compared with linear model estimates. An optimal pa-
rameter of 1.12 instead of 1.25 was later estimated for 
use with US official evaluations (Cole et al., 2009) and 
with simulated HD data (VanRaden et al., 2011b) and 
was not estimated here again. Direct genomic values 
were then combined by selection index with traditional 
EBV and a subset EBV that was obtained by applying 
pedigree relationships to only the genotyped animals as 
in VanRaden et al. (2009).

RESULTS AND DISCUSSION

Marker Quality

Actual markers selected from 4 different Illumina 
chips are compared in Table 1. For usable markers, 
missing and parent-progeny conflict rates both were 
lowest for HD and were highest for 3K. Quality was 
best for the HD chip with the most markers, indicating 

rapid advances in technology to read DNA. However, a 
larger proportion of the HD markers did not pass the 
HWE edits because of fewer genotyped animals and 
more sampling variation in the estimated frequencies. 
The number of usable HD markers was 636,967 before 
applying the HWE edit and 614,012 after. The HWE 
edits made 3 markers on the 3K chip and about 400 
markers on each of the 50K chips unusable compared 
with 22,955 markers on the HD chip. The 6K and 8K 
markers have very high quality because they were se-
lected from 50K and HD markers with >98% call rate 
and <0.01% parent-progeny conflict and because chip 
chemistry is the same as for the 50K and HD markers 
(Boichard et al., 2012). Stricter edits, such as elimina-
tion of any marker for any problem, might be justified 
with HD chips because of no or less visual inspection of 
cluster quality and because more markers are available 
from which to choose.

Map location problems caused removal of 140 HD 
markers from chromosomes 1, 4, 6, 7, 29, and X. The 
markers removed were mostly in small contiguous sets 
of 5 to 30 SNP. The numbers of haplotypes within the 
segments were greatly reduced after removing these 
small blocks that had poor correlations with surround-
ing markers, which indicated that SNP deletion solved 
the map problems. Figure 1 provides an example heat 
map showing a block of SNP removed from chromo-
some 1.

About half of the Illumina HD markers were removed 
by the redundancy edit, which agrees with Harris et 
al. (2011). Markers identified as redundant included 
426,718 detected as members of 105,305 groups, with 
the largest group containing 187 markers. Because only 
1 marker was selected per group, 321,413 HD markers 
(~50%) were deleted as redundant. For comparison, 
only 1,755 of the 45,187 usable SNP (~4%) from the 
BovineSNP50 were redundant by this same criterion. 
This indicates a large degree of short-range LD and 
that addition of even more high-LD markers will not be 
helpful. The high LD observed in this study, even with 
genotypes from 5 breeds included, may explain why 
benefits were small in previous HD evaluations.

Table 1. Numbers and properties of usable markers selected from 4 Illumina1 chips 

Chip
Animals 

genotyped (no.)

Markers Usable markers

Available (no.) Usable (no.) Redundant (no.) Missing (%) Conflicts (%)

BovineHD 1,170 777,962 614,012 321,413 0.2 0.004
BovineSNP50 v1 57,916 56,947 43,598 1,755 0.4 0.014
BovineSNP50 v2 15,270 54,609 43,293 1,755 0.4 0.011
Bovine3K 34,849 2,900 2,683 0 0.5 0.078
1Illumina, San Diego, CA.
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Imputation and Computation

Computer requirements were very reasonable for 
imputation, evaluation, and simulation. Imputation 
of 636,967 markers for 103,070 animals with findhap 
required 50 gigabytes of memory and 10 h using 6 
processors. Imputation of 311,725 markers for 161,341 
animals using version 2 of FImpute required 70 giga-
bytes of memory and 13 h using 5 processors. A more 
recent update of FImpute reduces the required memory 
to approximately 25 gigabytes for these data. Iteration 
for 311,725 marker effects for 29 traits (28 recorded 
traits plus net merit), using the densemap.f90 Fortran 
program of VanRaden (2008), required 30 gigabytes 
of memory and 2 d using 6 processors. Simulation of 
1 million SNP on 1 chromosome (sequence data) for 
1,000 genotyped animals plus 15,135 nongenotyped 

ancestors required 30 gigabytes of memory and 37 min 
with 1 processor. Imputation from 600K to sequence for 
1 chromosome of the 1,000 animals required 4 gigabytes 
of memory and 15 min using 6 processors with findhap. 
Memory, time, and especially disk space all will become 
more limiting if many animals are imputed to sequence-
level data.

Both imputation programs had high accuracy when 
imputing HD from 50K, but accuracy was less when 
imputing HD from lower densities, as expected (Table 
2). After imputing missing markers with findhap, 
percentages of genotypes correct were 99.9% for HD, 
99.0% for 50K, 94.6% for 6K, 90.5% for 3K, and 93.5% 
for 0K (imputed dams). With FImpute, 99.96% were 
correct for HD, 99.3% for 50K, 94.7% for 6K, 91.1% 
for 3K, and 95.1% for 0K. Accuracy further improved 
with imputation first to 50K and then to HD instead 
of all together for 6K (1.4 percentage points), 3K (2.6 
percentage points), and 0K genotypes (1.6 percentage 
points). Smaller gains occurred when findhap was used 
to impute first to 50K and then to HD in an earlier 
data set (results not shown). The BovineLD chip with 
6,836 usable markers should allow better imputation 
than the 5,130 markers tested.

A maximum length of 2,500 markers and a minimum 
of 100 markers yielded the best results for imputation 
to 330K when findhap was used to process all geno-
types and all densities together. For the sequence data, 
a maximum length of 100,000 markers and a minimum 
of 2,000 markers yielded the best results. The programs 
findhap and FImpute both include options to adjust 
imputation algorithms for marker density.

Imputation with 2 different HD chips or from HD 
to sequence data both had high accuracy when using 
simulated genotypes and findhap. Imputation from 50K 
to the combined set of two 600K chips (1.15 million 
markers) was most accurate at 98.59% if 200 bulls were 
genotyped with both 600K chips (Table 3). However, 
advantages compared with 0 or 500 double-genotyped 

Figure 1. Heat map showing marker correlations in a segment of 
bovine chromosome 1 and the block of SNP removed. Color version 
available in the online PDF.

Table 2. Percentage of simulated genotypes correctly called when imputing to high density from lower densities 
using findhap or FImpute 

Markers genotyped  
(no.), chip1

Animals 
genotyped (no.)

Correctly imputed genotypes (%)

Findhap  
(all)

FImpute  
(all)

FImpute  
(2 steps2)

330,000, HD 1,112 99.9 99.96 99.96
41,250, 50K 72,532 99.0 99.3 99.3
5,130, 6K 1,000 94.6 94.7 96.1
2,550, 3K 38,441 90.5 91.1 93.7
0, 0K 3,2953 93.5 95.1 96.7
1Illumina, San Diego, CA.
2Imputing lower densities to 41,250 markers and then imputing to 330,000 markers in a second step.
3Dams imputed from multiple progeny.
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bulls were both small. Obtaining overlap of the bulls 
genotyped may not be important because the chips 
already have sufficient overlap of markers to correctly 
match the haplotypes. Double genotyping could have 
other advantages, such as in comparing marker quality 
or map positions of markers on the 2 chips.

Imputation from 600K to 30 million SNP (sequence 
data) was 97.8% accurate on average. Accuracy may be 
lower in the sequence imputation than in the HD impu-
tations because sequences were simulated for only 500 
animals, whereas 1,000 simulated HD genotypes were 
used for imputation. In addition, a larger percentage of 
markers was missing going from 600K to sequence than 
from 50K to 600K. The LD may not be as high in the 
simulated sequences as would occur in real sequences, 
and other imputation strategies could be more accurate 
for sequence data than those used in findhap.

Allele frequencies in real and simulated data are 
compared in Table 4. The simulated frequencies closely 
match those of the 50K and HD markers. The actual 
markers on lower density chips were selected for high 
MAF, whereas the simulated markers were simply 
evenly spaced, and this affected imputation accuracy. 
If sequences were simulated with much lower MAF, as 
would occur in real data, imputation “accuracy” would 
be higher simply by guessing that the common allele is 
homozygous, but the correlations of estimations with 
true genotypes would be lower. Finally, actual sequenc-
es obtained from lower coverage will be less accurate 
than those simulated.

Genomic Evaluation
The average observed reliability over all traits for 

young bulls was 0.4 percentage point greater when 

using 311,725 markers as compared with 50K (Table 
5). With 311,725 markers, the linear model gave an 
average reliability of 60.3%, only 0.8 percentage point 
less than the 61.1% for the nonlinear model in Table 
5 and less than the difference of 1.6 percentage points 
estimated in simulation (VanRaden et al., 2011a). The 
realistic simulations of Harris and Johnson (2010) and 
VanRaden et al. (2011a) forecast small gains from more 
markers and nonlinear models, whereas the unrealistic 
simulation of Meuwissen and Goddard (2010) forecast 
large gains by assuming that all genetic variance was 
from 3 or 30 QTL on 1 chromosome. Unrealistic simula-
tions hurt rather than help genomic selection by making 
breeders less confident in forecasts, whereas realistic 
simulations can be very valuable.

The largest marker effects were for HD markers 
at new locations for some traits, but for many other 
traits, the largest effects were still for the same 50K 
markers. This indicated that imputation loss may have 
prevented the new markers from contributing fully to 
overall reliability. Multibreed evaluation could produce 
larger gains than the single-breed evaluation that was 
investigated here, but it will also require more invest-
ment in HD genotypes for each breed.

The preliminary studies indicated that imputation 
losses were too large with only 342 HD genotypes 
(VanRaden et al., 2011b) and that 1,074 HD genotypes 
were sufficient, with no further advantage from 1,510 
HD genotypes. The first study, with only 342 HD geno-
types for imputation, gave an average decrease of 0.5 
percentage point reliability as compared with the 50K 
reliability. The second study, with 1,074 HD genotypes 
and 636,967 markers, gave an average increase of 0.5 
percentage point above the 50K reliability. The third 

Table 3. Percentage of genotypes correctly imputed using 2 different simulated high-density chips and some bulls double genotyped 

Chip used
Animals  

(no.)

Correctly imputed genotypes (%) for n bulls genotyped with both high-density chips

0 50 200 500

50K 61,615 98.53 98.56 98.59 98.52
600K, chip 1 1,000 98.96 99.12 99.38 99.49
600K, chip 2 1,000 98.02 99.38 99.39 99.43
Both 600K chips n — 99.76 99.83 99.88

Table 4. Minor allele frequencies in Holstein for actual markers used from each chip and for simulated markers 
and sequences 

Minor allele  
frequency  
range (%)

Actual markers used (% in each range)
Simulated  
markers2,683 6,836 8,031 45,187 311,725

0–10 6 3 4 17 19 20
11–20 11 8 9 19 19 20
21–30 19 18 19 21 20 20
31–40 29 30 29 21 21 20
41–50 35 40 38 22 21 20
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study, using 311,725 instead of 636,967 markers, gave 
reliabilities that were almost identical for all traits but 
averaged slightly (0.1 percentage point) greater, per-
haps because imputation from lower densities to 636,967 
markers was more difficult than to 311,725 markers or 
because the same genetic variance was explained by 
using fewer marker effects to estimate.

The final study, with 1,510 HD animals for impu-
tation and 311,725 markers, gave reliability gains 
that were not greater and were actually slightly (0.2 
percentage point) less than with 1,074 HD animals. 
In a previous simulation, reliability increased by 1.6 
percentage points if all animals had HD but by only 
0.9 percentage point when 1,406 animals had HD and 
32,008 others were imputed from 50K (VanRaden et 
al., 2011a). The contrasting results are probably be-
cause improved imputation methods were used with the 
current actual data than with the previous simulated 
data. Consequently, fewer HD animals are now needed 
to reach high-level imputation accuracy from 50K, and 
further addition of HD animals to improve the imputa-
tion accuracy probably will not be profitable. However, 

a larger HD reference population may benefit imputa-
tion from low-density genotypes to HD.

The modest gains from HD as compared with 50K 
indicate that reliability for animals with lower density 
genotypes will actually decline instead of improve with 
HD evaluation because imputation is less accurate 
from lower density to HD than to 50K. This problem 
might be overcome by conducting 2 different routine 
evaluations and publishing 50K evaluations for animals 
genotyped at low density and HD evaluations only for 
animals genotyped at 50K. This strategy would require 
more computation. An alternative may be to select and 
genotype only the HD markers with the largest effects 
on future chips.

The HD markers do provide the benefits of locating 
a few new QTL and refining the positions of some QTL 
located less precisely with the 50K genomic evaluation. 
An example is a QTL on BTA18 with large effects on 
several traits (Cole et al., 2009). Figure 2 compares 
50K and HD marker effects for productive life across 
all chromosomes. The largest marker effects are on 
BTA5, BTA6, BTA7, and BTA18 in both the 50K and 

Table 5. Reliability of 45,187 (50K) and 311,725 (300K) marker genomic predictions from the nonlinear and linear models 

Trait

Reliability (%) Gain in reliability (percentage points)

Parent  
average

Nonlinear  
50K

Nonlinear  
300K

Nonlinear  
300K − 50K

Nonlinear − linear  
300K

Milk yield 38.6 65.5 65.2 −0.3 1.2
Fat yield 38.6 68.5 68.7 0.2 1.8
Protein yield 38.6 60.6 60.1 −0.5 0.3
Fat percentage 38.6 86.2 88.1 1.9 6.5
Protein percentage 38.6 81.4 83.5 2.1 3.6
Productive life 31.3 77.0 78.6 1.6 1.3
SCS 33.8 65.2 65.7 0.5 0.4
Daughter pregnancy rate 30.8 66.6 67.3 0.7 0.4
Sire calving ease 17.8 33.8 31.5 −2.3 1.9
Daughter calving ease 18.3 39.9 36.3 −3.6 1.0
Sire stillbirth 16.5 15.0 17.7 2.7 0.0
Daughter stillbirth 16.7 36.5 40.8 4.3 −2.6
Final score 29.4 55.2 55.0 −0.2 0.1
Stature 30.0 64.4 66.2 1.8 0.7
Strength 29.6 64.3 65.2 0.9 1.4
Dairy form 29.5 66.1 66.7 0.6 0.4
Foot angle 28.6 49.8 49.8 0.0 0.3
Rear legs (side view) 29.2 59.8 59.5 −0.3 0.1
Body depth 29.5 67.4 68.1 0.7 1.4
Rump angle 30.0 66.2 66.8 0.6 0.1
Rump width 29.3 62.4 62.1 −0.3 0.7
Fore udder attachment 29.3 71.6 72.0 0.4 0.4
Rear udder height 29.2 55.4 54.8 −0.6 0.8
Udder depth 29.9 76.3 76.8 0.5 0.3
Udder cleft 29.0 59.4 58.7 −0.7 −0.2
Front teat placement 29.5 68.6 67.0 −1.6 0.2
Teat length 29.7 67.0 68.5 1.5 0.7
Rear legs (rear view) 28.4 50.9 50.7 −0.2 0.1
Average 29.6 60.7 61.1 0.4 0.8
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HD graphs, but the HD peaks are narrower on each of 
those chromosomes. The solid-colored areas at the bot-
tom of each graph show that most HD marker effects 
are smaller than 50K because the HD prior distributes 
small genetic effects over more markers.

Figure 3 focuses on a 1-Mbase region of BTA18. The 
50K marker reported by Cole et al. (2009) has a smaller 

effect in the HD evaluation, whereas 3 new markers 
from the HD chip have similar effects and locate the 
QTL further to the left. On BTA5, BTA6, and BTA7, 
effects of the 50K markers were also smaller, and new 
markers from the HD surpassed them. Across all chro-
mosomes in Figure 2, the 6 markers with the largest 
effects were all from the HD chip. This may explain 

Figure 2. Effects (genetic SD) for productive life by chromosome from (a) 45,187 [BovineSNP50 Genotyping BeadChip (50,000 markers, 
50K); Illumina Inc., San Diego, CA] and (b) 311,725 [BovineHD Genotyping BeadChip (high density, HD); Illumina] marker evaluations. Color 
version available in the online PDF.
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why the gain of 1.6 percentage points in HD reliability 
over 50K for productive life in Table 5 was larger than 
for most other traits.

CONCLUSIONS

Genotypes from the Illumina BovineHD chip were of 
very high quality, but about half of the 777,962 markers 
were not used because of strong correlations with adja-
cent markers. Automated marker edits were developed 
to make visual inspection of cluster quality less neces-
sary. Very large numbers of haplotypes within a few 
segments indicated that 140 markers were apparently 
mapped to incorrect positions, and those markers were 
removed. Accurate imputation is a key to ensuring that 
the benefits from more markers exceed the imputation 
loss because gains from HD are small. Imputation to 
HD gave 99.3% correct genotypes from 50K, 96.1% 
from 6K, and 93.7% from 3K. Imputation between 2 
different HD chips or between HD and sequence data 
can be done accurately with reasonable computational 
effort. Increasing the number of markers gave only a 0.4 
percentage point gain in average reliability of genomic 
predictions for HD compared with 50K, a little less 
than we expected from simulation, but in agreement 
with most other studies of actual data. The nonlinear 
model with heavy-tailed prior distribution for marker 
effects increased reliability by only 0.8 percentage point 

compared with a linear model. Reliability improved 
when the number of animals with HD genotypes used 
for imputation increased from 342 to 1,074 but did not 
improve with a further increase to 1,510 HD animals. 
Imputation and evaluation were both computation-
ally affordable for 161,341 total animals currently 
genotyped, requiring about 10 h and 2 d, respectively, 
but benefits from higher density genotypes were small 
within the Holstein breed.
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