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  ABSTRACT 

  Feed efficiency is an economically important trait 
in the beef and dairy cattle industries. Residual feed 
intake (RFI) is a measure of partial efficiency that is in-
dependent of production level per unit of body weight. 
The objective of this study was to identify significant 
associations between single nucleotide polymorphism 
(SNP) markers and RFI in dairy cattle using the Ran-
dom Forests (RF) algorithm. Genomic data included 
42,275 SNP genotypes for 395 Holstein cows, whereas 
phenotypic measurements were daily RFI from 50 to 
150 d postpartum. Residual feed intake was defined as 
the difference between an animal’s feed intake and the 
average intake of its cohort, after adjustment for year 
and season of calving, year and season of measurement, 
age at calving nested within parity, days in milk, milk 
yield, body weight, and body weight change. Random 
Forests is a widely used machine-learning algorithm 
that has been applied to classification and regression 
problems. By analyzing the tree structures produced 
within RF, the 25 most frequent pairwise SNP interac-
tions were reported as possible epistatic interactions. 
The importance scores that are generated by RF take 
into account both main effects of variables and interac-
tions between variables, and the most negative value of 
all importance scores can be used as the cutoff level for 
declaring SNP effects as significant. Ranking by impor-
tance scores, 188 SNP surpassed the threshold, among 
which 38 SNP were mapped to RFI quantitative trait 
loci (QTL) regions reported in a previous study in beef 
cattle, and 2 SNP were also detected by a genome-wide 
association study in beef cattle. The ratio of number of 
SNP located in RFI QTL to the total number of SNP in 
the top 188 SNP chosen by RF was significantly higher 
than in all 42,275 whole-genome markers. Pathway 

analysis indicated that many of the top 188 SNP are 
in genomic regions that contain annotated genes with 
biological functions that may influence RFI. Frequently 
occurring ancestor-descendant SNP pairs can be ex-
plored as possible epistatic effects for further study. 
The importance scores generated by RF can be used 
effectively to identify large additive or epistatic SNP 
and informative QTL. The consistency in results of our 
study and previous studies in beef cattle indicates that 
the genetic architecture of RFI in dairy cattle might be 
similar to that of beef cattle. 
  Key words:    Random Forest ,  single nucleotide poly-
morphism ,  residual feed intake ,  dairy cattle 

  INTRODUCTION 

  Feed efficiency is an economically important trait in 
the beef and dairy cattle industries. Typically, feed costs 
account for 60 to 65% of the total production costs in a 
beef cattle operation (Sainz and Paulino, 2004) and up 
to 50% of the total production costs in a dairy cattle 
operation (VandeHaar and St-Pierre, 2006). Because of 
ongoing genetic selection for productivity and improve-
ments in herd management, the efficiency of converting 
feed to milk in US dairy cattle has doubled over the 
past 60 yr due to dilution of maintenance (VandeHaar 
and St-Pierre, 2006). Further improvements in feed effi-
ciency are essential, not only to enhance profitability of 
the dairy industry, but also to feed the growing global 
human population sustainably. Because of the biologi-
cal complexity of feed efficiency, methods to evaluate 
feed efficiency that are independent of the dilution of 
maintenance are needed. 

  Residual feed intake (RFI), first proposed by Koch 
et al. (1963) in beef cattle, is the difference between 
actual and predicted intake for an animal. Predicted 
intake can be computed from nutritional models based 
on dietary energy content, or it can be determined sta-
tistically by the deviation of an animal’s intake from 
the average intake of its cohort, after adjustment for 
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production and known environmental differences. Thus, 
RFI is a measure of partial efficiency that is indepen-
dent of production level per unit of BW, unlike gross 
efficiency as measured by feed conversion ratio, which 
is the ratio of feed intake to rate of gain (beef cattle) 
or milk production (dairy cattle) of an individual 
animal. Genetically, reported heritability estimates of 
RFI are moderate, ranging from 0.18 to 0.39 (Arthur 
et al., 2001; Robinson and Oddy, 2004; Schenkel et al., 
2004). Estimated breeding values for RFI in beef cattle 
in Australia were developed by Exton et al. (1999). 
On a molecular basis, 19 QTL for RFI in beef cattle 
were identified as significant at the chromosome-wide 
level by Sherman et al. (2009), and several SNP mark-
ers were identified by genome-wide association studies 
(GWAS) in beef cattle (Bolormaa et al., 2011; Snelling 
et al., 2011; Rolf et al., 2012). In dairy cattle, however, 
studies of RFI and reports of QTL for RFI are limited, 
especially in lactating cows.

Adding genomic information from SNP markers 
has enhanced traditional genetic evaluation of North 
American dairy cattle by providing higher reliabilities 
for young selection candidates (VanRaden et al., 2009). 
To improve the feed efficiency of dairy cattle, genomic 
evaluation is essential, because routine measurement of 
individual animal feed intakes in a traditional progeny-
testing program would be cost prohibitive. The major-
ity of published genomic studies in dairy cattle have 
used EBV of bulls, which reflect the sum of additive 
genetic effects as the dependent variable. However, 
direct utilization of RFI phenotypes of individual cows 
as the dependent variable in a genomic analysis al-
lows the study of both additive effects of individual 
SNP and epistatic interactions between pairs or sets 
of SNP. Studying epistatic interactions between SNP 
using conventional statistical methods such as Bayes-
ian regression models is computationally infeasible due 
to the massive number of potential 2-way and 3-way 
interactions between SNP.

The Random Forests (RF) algorithm (Breiman, 
2001) is a machine-learning method that has been 
widely applied to classification and regression prob-
lems, and is particularly well suited for situations in 
which the number of potential explanatory variables 
vastly exceeds the number of observations. According 
to Liaw and Wiener (2002), the importance scores for 
potential explanatory variables that are generated by 
RF algorithms take into account both the main effects 
of these variables and interactions between variables. 
In a genomic analysis, these represent additive effects 
of SNP and epistatic interactions between SNP, respec-
tively. As a screening tool for identifying risk-associated 
SNP, Lunetta et al. (2004) tested the performance of 
RF to identify risk-associated SNP using a simulated 

complex disease model. The importance score signifi-
cantly outperformed the univariate Fisher exact test 
P-value, if risk SNP interacted. The RF algorithm was 
also implemented to successfully identify epistatic in-
teractions associated with complex traits in humans, 
using importance scores in both simulation and real 
data studies (Chen et al., 2007; Jiang et al., 2009). 
We also applied the Bayesian least absolute selection 
and shrinkage operator (LASSO) of Park and Casella 
(2008) to estimate the additive effects of individual 
SNP. This method is effective for genomic selection of 
dairy cattle as an additive effects model (de los Campos 
et al., 2009; Weigel et al., 2009; Vazquez et al., 2010), 
although it is not yet commonly used and needs to be 
further studied for GWAS. Due to the advantage of 
simultaneously analyzing multiple SNP, compared with 
single SNP-based GWAS, Bayesian LASSO has been 
recently implemented for GWAS and has successfully 
detected several significant QTL and genes associated 
with quantitative traits using estimated genetic effects 
(Yi and Xu, 2008; Li et al., 2011).

In this study, we estimated SNP effects with the 
importance scores from the RF algorithm, considering 
both additive effects of individual SNP and epistatic 
interactions between SNP, as well as the absolute val-
ues of estimated genetic effects from Bayesian LASSO, 
considering only additive effects of individual SNP. 
By analyzing the structure of trees produced within 
the RF, the most frequent pairs of ancestor and de-
scendant SNP (i.e., pairs of SNP occurring within the 
same branch in many trees) are identified as possible 
epistatic interactions. To our knowledge, this is the first 
application of RF for detection of potentially epistatic 
QTL in food animal species.

MATERIALS AND METHODS

Phenotypic Values

The experimental population and the methods for 
phenotypic data collection were described in detail 
by Spurlock et al. (2012). Phenotypic records of 402 
Holstein cows at the Iowa State University Dairy from 
50 to 150 DIM were available, including daily milk 
yield, weekly protein percentage and lactose percent-
age, as analyzed by Dairy Lab Services Inc. (Dubuque, 
IA), monthly milk fat percentage from DHIA records, 
weekly BW, and daily DMI.

Component percentages were set to missing values if 
less than 1% or greater than 10% (fat percentage and 
protein percentage) or less than 0% or greater than 10% 
(lactose percentage), and less than 1% of total percent-
age observations were removed. To impute daily records 
from weekly or monthly data points while also smooth-
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ing variation in measurements of BW, fat percentage, 
protein percentage, and lactose percentage, local linear 
regression (Wand and Jones, 1995) was used and the 
bandwidth was selected with the direct plug-in method-
ology described by Ruppert et al. (1995). If fewer than 
10 data points were available for fat percentage, protein 
percentage, and lactose percentage, the daily values 
were imputed from the average of available records. 
Net energy required for lactation (only including energy 
in milk) was calculated based on the gross energy per 
kilogram for fat, protein, and lactose according to NRC 
(2001) using the following formula:

NEL (Mcal) = (0.0929 × fat % + 0.0563 × protein %  

+ 0.0395 × lactose %) × daily milk yield (kg).

To calculate RFI, DMI was adjusted using the follow-
ing mixed linear model:

yijklm = μ + YSi + CalvCatj + YSRk + Cowl  

+ β1DIMijklm + β2NELijklm + β3BWijklm  

+ β4ΔBWijklm + eijklm,

where yijklm is the DMI observation for an individual 
animal; μ is the overall mean; YSi (i = 1, 2, . . . , 9) is 
a categorical fixed effect of year and season of calving; 
CalvCatj (j = 1, 2, . . . , 14) is a categorical fixed effect 
of parity and age at calving; YSRk (k = 1, 2, . . . , 9) is 
a categorical fixed effect of year and season of record-
ing; Cowl ∼ N cow0 2, Iσ( ) is the random animal effect, 

where I is an identity matrix and σcow
2  is the variance of 

animal effect; DIMijklm is a continuous fixed effect of 
DIM, with regression coefficient β1; NELijklm is a con-
tinuous fixed effect of NEL (Mcal), with regression coef-
ficient β2; BWijklm is a continuous fixed effect of BW 
(kg), with regression coefficient β3; ΔBWijklm is a con-
tinuous fixed effect of BW change (kg/d), with regres-
sion coefficient β4; and eijklm ~ ,N 0 2Iσe( ) is the random 

error, where σe
2 is the error variance. The levels of cat-

egorical fixed effects were combined with adjacent levels 
if the number of records within a level was less than 
1,000. The linear mixed model was implemented using 
lme4 R package version 0.999999-0 (http://
lme4.r-forge.r-project.org/). After fitting the model 
shown above, the estimate of the random animal effect 
was considered as the RFI phenotype for that cow in 
the subsequent genomic analysis.

Genetic Markers

The Illumina BovineSNP50 BeadChip (Illumina Inc., 
San Diego, CA) was used for genotyping. Cows with 

more than 5% missing genotypes were excluded, and 
SNP with more than 1% missing values or minor allele 
frequencies less than 5% were removed. Missing geno-
types were imputed without pedigree using BEAGLE 
3.3.2 with default options (Browning and Browning, 
2009). After quality control editing, 42,275 SNP in 395 
cows were available for further analysis. The SNP geno-
types at each locus were coded as 0, 1, or 2, according 
to the number of copies of the minor allele.

Description of the RF Algorithm

General Description. The RF algorithm, which 
was introduced by Breiman (2001), produces an ensem-
ble of tree predictors (for regression or classification), 
where each tree is grown from a different bootstrap 
sample. Furthermore, at each split point (node) in each 
tree, a different subset of mtry features are evaluated to 
choose the best feature for splitting, where mtry is an 
input parameter to the RF algorithm. In the current 
study, regression on SNP genotypes was implemented 
using the randomForest package in R (Liaw, and Wie-
ner, 2011).

The performance of each tree in the RF can be 
evaluated using the mean squared error (MSE) of the 
“out-of-bag” (OOB) data, which are the data points 
not included in the bootstrap sample. The formula for 
MSEOOB in the RF is given as follows: 

 MSEOOB = −( )−

=
∑n y yi i
i

n
1 2

1

ˆ , 

where n is the number of animals, i is the average of 
the OOB predictions for ith animal, and the OOB pre-
dictions are from trees in which the animal was OOB.

To complete the regression analysis, let n = 395 be 
the number of animals that passed genotype quality 
control, p = 42,275 be the number of SNP, y(n × 1) 
be the phenotype vector of RFI, and X = {xi} be the 
marker matrix, where xi is a (1 × p) vector containing 
the p SNP of an individual animal. Draw ntree boot-
strap samples from the whole data set to grow the same 
number of trees. To build a node within a tree, do not 
choose the best split from all p of the original SNP, but 
rather search within a random sample of mtry SNP to 
find the best split SNP. The fitted value is the average 
prediction over ntree trees (Liaw and Wiener, 2002).

Pairwise Epistatic Interactions Between SNP. 
The tree structures generated by RF are informative for 
identifying interactions between potential explanatory 
variables (in this case, epistatic effects of pairs of SNP). 
An example is illustrated in Figure 1. Assume that SNP 
C and E jointly have a large epistatic effect on RFI. 
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The combination of SNP C and E will appear more 
frequently in the same branch of a tree than in other 
branches or trees, which will form a parent-descendant 
(child, grandchild, and so on) pair hereinafter referred 
to as a descendant pair. In this example, adding SNP 
E improves prediction accuracy conditionally on the 
split produced by its ancestor SNP C, which appears at 
a higher level of the same branch. If 2 SNP have large 
but independent main effects on the response variable, 
such as SNP B and C, they will also appear frequently 
within the same tree, but not necessarily as descendant 
pairs within the same branch. Thus, the descendant 
pairs that occur most frequently in the RF can be rec-
ognized as possible pairwise epistatic interactions.

SNP Importance Scores. The importance score 
(ΔMSE%) for the mth SNP is defined as the average 
percentage increase in MSE when generating a predic-
tion of the OOB data if the value of the mth SNP is 
randomly permuted, whereas genotypes for all other 
SNP remain unchanged (Breiman, 2001). Both additive 
effects and interactions with other SNP will contribute 
to increasing the importance scores of SNP. In other 
words, SNP with large positive importance scores are 
those for which random permutation of the SNP geno-
type will increase prediction error, and this increase in 
MSE will reflect both the additive effect of the SNP 

and its epistatic interactions with all other SNP. For 
SNP that are not associated with the response variable, 
the importance score will be approximately centered at 
0. However, due to random sampling the actual impor-
tance scores will be slightly positive or slightly negative 
with equal probability.

Therefore, one way to differentiate SNP with real ef-
fects on the phenotype from SNP with spurious effects 
is to use the absolute value of the most negative impor-
tance score as the cutoff level for declaring SNP effects 
as significant—any SNP with importance scores higher 
than this threshold can be considered as transmitting 
a real signal.

Implementation of the RF Analysis

Pairwise Interactions Between SNP. To reduce 
the computational burden, a 2-step implementation of 
the RF algorithm was used, in which preselection of 
SNP was used to remove the majority of SNP that did 
not have strong additive or epistatic effects. Two param-
eters, the number of trees grown within each random 
forest (ntree) and the number of SNP chosen per random 
bootstrap sample at each node of the trees (mtry), were 
tuned via 5-fold cross-validation with a greedy search 
algorithm. The parameters chosen in this tuning step 
were ntree = 700 and mtry = 1,000, and ntree = 700 and 
mtry = 100 for steps 1 and step 2, respectively.

The procedure for SNP selection in step 1 is illus-
trated in Figure 2. Initially, a total of 1,000 RF were 
divided into 10 groups with 100 forests apiece. Within 
each group, and for each forest, the top n1 SNP, as 
ranked by importance score, were selected from the 
total set of 42,275 SNP. Assume that the probability of 
a single SNP being selected within 1 forest represents a 
Bernoulli random variable with p1 = n1/42,275. For all 
100 forests within a group, the number of times each 
SNP is selected follows a Binomial distribution, with 
the number of trials equal to 100 and success prob-
ability of p1 (i.e., probability that a given SNP was 
included in the top n1) in each trial. A probability of 
0.05 was used as the threshold to obtain a significance 
level of 0.05, and the n2 SNP that appeared at least j 
times with binomial probability (j, p1) of less than 0.05 
were chosen for that group. Repeating this procedure 
produces 10 groups that, in turn, follow a Binomial 
distribution, with the number of trails equal to 10, each 
with probability of success p. The SNP that were repre-
sented in more than k groups had binomial probability 
(k, p) less than 0.05, and these were selected for the 
analysis of pairwise interactions in step 2. To stabilize 
the results in step 2, a total of 100 RF were generated 
for the analysis, and the number of descendant pairs 
over all trees was counted.

Figure 1. Example tree generated by the Random Forests algo-
rithm. Single nucleotide polymorphism pairs A and B, A and C, A and 
D, A, and E, C and D, C and E, and D and E represent descendant 
pairs, which may indicate epistatic genetic effects, whereas SNP pairs 
B and C, B and D, and B and E represent nondescendant pairs, which 
may indicate independent additive genetic effects.
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Important Individual SNP. All 42,275 SNP were 
ranked according to their importance scores generated 
by the RF. To improve the stability of the results, the 
average importance scores from 1,000 RF were used as 
the final importance scores for individual SNP. The ab-
solute value of the most negative importance score was 
used as the threshold, and SNP with importance scores 
greater than this threshold were reported as those with 
significant effects.

Reference Analysis with Bayesian LASSO

For reference purposes, the additive effects of individ-
ual SNP were estimated by regressing RFI phenotypes 
on SNP covariates using the Bayesian LASSO of Park 
and Casella (2008). The hierarchical model for Bayes-
ian LASSO is defined as follows:

 Likelihood: p N yi
i

n

i( | |, ) ( , );y xβ βσ σε ε
2 2

1
=
=
∏ ′  

 
Prior:  (p p p p p

N j
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where N yi i( , )| x′β σε
2  and N j j( | , )β τ σε0 2 2  are normal den-

sities centered at xi
′β and 0, with variances σε

2 and τ σεj
2 2, 

respectively, where β is the regression of y on SNP co-
variates and σε

2 is the variance of model residual; 
χ σε
−2 2( | , )df S  is a scaled-inverted chi-squared density, 

with degrees of freedom parameter df and scale param-
eter S; Exp( )|τ λj

2  is an exponential distribution as-
signed to a positive scale parameter τ j

2, indexed by the 

prior distribution of the regularization parameter λ; 
G(λ2|α1,α2) is a gamma distribution, with shape and 
rate parameters α1 and α2, respectively. The analysis 
was performed using the BLR package in R (de los 
Campos and Perez Rodriguez, 2012).

Pathway Analysis

A pathway analysis was performed to identify bio-
logical pathways that may influence RFI. The genomic 
coordinates of RefSeq genes and Ensembl transcript 
predictions were downloaded from the UCSC Genome 
Browser (http://hgdownload.soe.ucsc.edu/downloads.
html#cow). The closest annotated RefSeq genes were 
identified for each of the top SNP with the highest 
importance scores using the BEDTools software pack-
age (Quinlan and Hall, 2010). Only genes overlapping 
or within 37,000 bp of each respective SNP marker 
were chosen for further analysis. The 37,000-bp cutoff 
was based on the median distance between SNP on the 
BovineSNP50 BeadChip (Matukumalli et al., 2009). 
Cattle genome annotation is still ongoing (Childers et 
al., 2011) and is highly likely to be incomplete. There-
fore, SNP with distantly associated genes (i.e., SNP 
greater than 37,000 bp away from the closest gene) 
may be linked to cryptic functional genetic elements 
that have not yet been discovered instead of the closest 
annotated gene. Out of the current 26,740 annotated 
Ensembl transcripts, 21,968 transcripts (~82%) were 
within 37,000 bp of a BovineSNP50 SNP. For RefSeq 
annotations, 12,137 RefSeq genes (~86%) were within 
the 37,000 cutoff out of 14,176 total RefSeq genes. Gene 
enrichment analysis and gene functional analysis were 
performed using the DAVID web tool (Huang et al., 
2009a,b) and pathway analysis was performed using 

Figure 2. Illustration of the dimension-reduction process (step 1) for selecting SNP to include in the subsequent Random Forests (RF) 
analysis of pairwise epistatic effects. p(x) = probability that a given SNP was included in the top n(x) SNP.
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the PANTHER database (Thomas et al., 2003; Mi et 
al., 2005). Biochemical pathways were visualized us-
ing PathVisio (van Iersel et al., 2008). All annotated 
Bos taurus genes in each respective database were used 
as background for both the DAVID and PANTHER 
analyses, as both web tools cannot use gene lists con-
taining over 3,000 entries for background.

RESULTS AND DISCUSSION

The RFI estimates ranged from −4.74 to 3.70 kg of 
DM/d, with a mean of 0 kg of DM/d and standard 
deviation of 1.34 kg of DM/d. The correlation between 
fitted values from the linear mixed model and real ob-
servations of DMI was 0.84 as the goodness of fitness 
for the model. For the RF analysis, the running mean 
MSEOOB values over different number of RF replica-
tions were plotted in Figure 3. As the number of RF 
replications increased, the variation of mean MSEOOB 
decreased, which means that the results over 1,000 RF 
replications in step 1 and 100 RF replications in step 2 
were stable.

In the SNP selection step, a total of 5,800 SNP were 
chosen for the second step, which involved the analy-
sis of pairwise epistatic effects. To select SNP, 4,000 
(n1) SNP were first chosen in each RF, such that p1 = 
4,000/42,275 ≈ 0.095. Within each group of 100 RF, 
the SNP that appeared at least in 15 RF were selected. 

Based on the frequency distribution SNP that were 
selected in 1, 2, 3, . . . , 10 groups of 100 RF (Figure 
4), it is clear that SNP were not selected randomly. In 
the absence of real effects of SNP on the phenotype, 
one would expect a monotonically decreasing pattern in 
the number of times individual SNP were represented 
as the number of groups increased. On the contrary, a 
relatively large number of SNP were selected within all 
10 groups, which indicates that they had strong asso-
ciations with the RFI phenotypes. In total, 5,800 SNP 
that appeared in at least 5 of the 10 groups were chosen 
for the second step. For ranking SNP based on indi-
vidual importance, the threshold value was set to 0.015, 
which was the most negative value of all importance 
scores. A total of 188 SNP surpassed this threshold. 
The distribution of the importance scores for all 42,275 
SNP across the 29 autosomes and the X chromosome is 
given in Figure 5. The closest annotated RefSeq genes 
identified for each of the 188 SNP are listed in Supple-
mentary Table S1 (available online at http://dx.doi.
org/10.3168/jds.2013-6237).

The number of descendant pairs was counted us-
ing 100 RF from step 2 with 5,800 SNP, as described 
above, with 700 trees in each forest. As shown in Table 
1, the first 2 pairs included SNP ARS-USMARC-
Parent-DQ888312-rs29015945 on Bos taurus autosome 
(BTA) 19, which was represented 7 times within the 
25 most-frequent descendant pairs and had the high-

Figure 3. The running means of mean squared error in out-of-bag data (MSEOOB) over different number of Random Forests (RF) replications 
in (a) step 1 (over 1,000 RF replications) and (b) step 2 (over 100 RF replications). As the number of RF replications increases, the variation 
of mean MSEOOB decreases.
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est RF importance score of 0.329 (as shown in Table 
2). The SNP ARS-BFGL-NGS-25743 on BTA11 was 
represented in 16 of the 25 most-frequent descendant 
pairs and had the second-highest RF importance score 
(0.286). The SNP ARS-BFGL-NGS-106241 on BTA7 
had the third-highest importance score (0.120), and 
SNP ARS-BFGL-BAC-2599 on BTA22 had the fourth-
highest importance score (0.109). These last 2 SNP 
were represented in the remaining 3 pairs of the top 25 
most-frequent descendant pairs, which did not contain 
SNP with the first- and second-highest importance 
scores. Thus, SNP that had higher importance scores 
in the RF analysis were involved in a large number of 
pairwise interactions.

The significances of the top 25 descendant pairs as 
possible pairwise epistatic interactions were validated 
via linear regression. Twenty-one unique SNP were pre-
sented in the top 25 descendant pairs. Therefore, the 
RFI phenotypes of 395 cows were regressed on 21 SNP 
and 25 pairwise interactions as fixed effects simultane-
ously (replication 0). Individual SNP were fitted using 
their genotypes as covariates. Interactions were renum-
bered as integers 1 to 9, if combinations of genotypes 
were 11, 00, 01, 02, 10, 12, 20, 21, and 22. Interactions 
were also fitted as covariates after renumbering due to 
the limited number of animals. The correlation between 
fitted RFI and actual RFI was 0.66, and 8 (out of 25) 
interaction terms had P-values below 0.1, which means 
that 32% of interactions had significance levels below 
0.1. To test whether descendant pairs resulted from 
large main effects of individual SNP instead of interac-
tions, 5 regression models (replications a1 to a5) were 
fitted using the same 21 SNP as in replication 0, along 
with 25 interactions that represented randomly pairs 
of the 21 SNP rather than descendant pairs. Another 
5 regression models (replications b1 to b5) were fit-
ted using 25 interactions of pairs of SNP that were 
randomly sampled from all 5,800 SNPs brought into 
the second step along with their corresponding main 
effects. The mean correlations between fitted and ac-
tual RFI for replication a1 to a5 and b1 to b5 were 
0.62 and 0.61, respectively, and the average numbers 
of interaction terms with P-values below 0.1 were 3 
and 2. Interactions in replication a1 to a5 involved the 
same SNP as in replication 0 but different pairing pat-
terns, which resulted in depressed correlation between 
fitted and actual RFI and fewer numbers of interactions 
with P-values less than 0.1 than in replication 0. This 

Figure 4. Frequency distribution of representation of individual 
SNP among the 10 groups created in the dimension-reduction pro-
cess (step 1) for selecting SNP to include in the subsequent Random 
Forests analysis of pairwise epistatic effects.

Figure 5. Manhattan plot of the square root of importance scores (ΔMSE%, where MSE = mean squared error) for SNP in the Random 
Forests analysis. Single nucleotide polymorphisms with negative importance scores are excluded and the dashed line corresponds to the threshold 
value for SNP selection, which was equal to the absolute value of the most negative importance score.
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indicates that significances of descendant pairs were 
not caused by main effects (additivity or dominance) 
of the involved SNP, but rather by their interactions. 
Results from replication b1 to b5 showed that descen-
dant pairs were also more significant than interactions 
formed by randomly generated SNP. Hence, descendant 
pairs from RF helped to choose informative pairwise 
epistatic interactions.

Table 2 shows the chromosomal locations and im-
portance scores of the highest-ranking SNP from the 
RF analysis, based on importance scores, along with 
their ranking based on absolute estimated additive ge-
netic effects from Bayesian LASSO analysis. It is clear 
that most of the 188 SNP that were associated with 
RFI in the RF analysis had much lower rankings in 
the Bayesian LASSO analysis. For example, SNP ARS-
USMARC-Parent-DQ888312-rs29015945 ranked first in 
the RF analysis but only 890th in the Bayesian LASSO 
analysis, whereas SNP ARS-BFGL-NGS-106241 ranked 
third in the RF analysis and 99th in the Bayesian LAS-
SO analysis. In other words, these SNP had relatively 
small additive genetic effects, but they contributed con-
siderably to the RFI phenotype through interactions 
with other SNP. On the other hand, SNP ARS-BFGL-
NGS-25743 ranked second in both the RF analysis and 
the Bayesian LASSO analysis, which means that it not 

only had a large additive effect, but also potential criti-
cal epistatic effects in conjunction with other SNP.

Mapping to The Bovine Genome Database with Bo-
vine UMD3.1 Assembly Chromosome Genome Browser 
(http://bovinegenome.org/cgi-bin/gbrowse/bovine_
UMD31/), 38 of the 188 SNP that surpassed the RF 
threshold were located in QTL regions for RFI in beef 
cattle (had been transformed into the physical position 
in the database), as reported in a previous study by 
Sherman et al. (2009). We considered the ratio (R1) 
of 38 SNP that were located in RFI QTL to 188 SNP 
that surpassed the RF threshold as R1 = 38/188 = 
0.202, which means that 20.2% of significant SNP in 
our study were located within QTL regions reported by 
Sherman et al. (2009). Within all 42,275 SNP located 
across the whole genome, 5,813 SNP were located in 
RFI QTL regions when mapped to the UMD3.1 as-
sembly. The second ratio (R2) was calculated as R2 = 
5,813/42,275 = 0.138, which means that about 13.8% 
of whole-genome markers were covered by RFI QTL 
regions reported by Sherman et al. (2009). Besides RFI, 
previously reported QTL for 166 other traits in dairy 
and beef cattle were mapped by our top 188 SNP in 
the UMD3.1 assembly. Similar R1 and R2 statistics were 
then calculated for each of the 166 traits. The density 
of the difference, (R1 − R2), for 167 traits (including 

Table 1. The 25 most frequently represented descendant pairs of SNP in the Random Forests (RF) analysis, which represent pairs of SNP with 
potentially important pairwise epistatic interactions associated with residual feed intake1  

Pair rank SNP 1 SNP 2

Individual rank by RF

SNP 1 SNP 2

1 ARS-BFGL-NGS-25743 ARS-USMARC-Parent-DQ888312-rs29015945 2 1
2 ARS-BFGL-NGS-106241 ARS-BFGL-NGS-25743 3 2
3 ARS-BFGL-NGS-25743 ARS-BFGL-NGS-30459 2 17
4 ARS-BFGL-NGS-65789 ARS-USMARC-Parent-DQ888312-rs29015945 35 1
5 ARS-USMARC-Parent-DQ888312-rs29015945 BTA-43831-no-rs 1 8
6 ARS-BFGL-BAC-2599 ARS-BFGL-NGS-25743 4 2
7 ARS-BFGL-NGS-108391 ARS-BFGL-NGS-25743 10 2
8 ARS-BFGL-BAC-2599 ARS-BFGL-NGS-30448 4 6
9 ARS-BFGL-NGS-25743 BTA-56614-no-rs 2 33
10 ARS-BFGL-NGS-106241 ARS-BFGL-NGS-30448 3 6
11 ARS-BFGL-NGS-20025 ARS-BFGL-NGS-25743 9 2
12 ARS-BFGL-NGS-25743 BTA-19869-no-rs 2 2,509
13 ARS-BFGL-NGS-106241 Hapmap43850-BTA-43155 3 12
14 ARS-BFGL-NGS-25743 ARS-BFGL-NGS-30448 2 6
15 ARS-BFGL-NGS-25743 ARS-BFGL-NGS-84065 2 45
16 ARS-USMARC-Parent-DQ888312-rs29015945 BTA-07453-no-rs 1 128
17 ARS-BFGL-NGS-25743 Hapmap59539-rs29025538 2 17,875
18 ARS-BFGL-NGS-113918 ARS-BFGL-NGS-25743 105 2
19 ARS-BFGL-NGS-25743 BTA-29995-no-rs 2 74
20 ARS-BFGL-NGS-25743 Hapmap43850-BTA-43155 2 12
21 ARS-BFGL-NGS-100251 ARS-BFGL-NGS-25743 157 2
22 ARS-BFGL-NGS-25743 Hapmap43850-BTA-43155 2 12
23 ARS-BFGL-BAC-2599 ARS-USMARC-Parent-DQ888312-rs29015945 4 1
24 ARS-BFGL-NGS-35632 ARS-USMARC-Parent-DQ888312-rs29015945 21 1
25 ARS-USMARC-Parent-DQ888312-rs29015945 BTA-29995-no-rs 1 74
1Names and importance score rankings of individual SNP involved in each descendant pair are provided.



6724 YAO ET AL.

Journal of Dairy Science Vol. 96 No. 10, 2013

RFI) was plotted in Figure 6, and it approximated a 
normal distribution N(−0.002, 0.0282). For RFI, the 
difference (R1 − R2) was 0.064, and it exceeded the 
0.99th percentile, which corresponds to a significance 
level of 0.01 for a one-tailed test. This indicates that the 
SNP with largest importance score in our RF analysis 
were overrepresented in QTL regions for RFI in beef 
cattle as reported by Sherman et al. (2009). Among 
the top 188 SNP ranked by Bayesian LASSO, 39 SNP 
overlapped with top 188 SNP identified by RF, and 35 
SNP were located in QTL regions for RFI as reported 
by Sherman et al. (2009), slightly fewer than in the 
top 188 SNP by RF. According to studies on Angus 
steers (Herd and Arthur, 2009), heat production from 
metabolic processes, body composition, and physical 
activity explained up to 73% of the variation in RFI. It 
is likely that many of these metabolic processes would 
be the same for beef and dairy cattle, and the results 
of our study indicate a genetic basis for the similarities. 
Furthermore, it is possible that the SNP identified as 
important in the present study can be used to help to 
refine the locations of previously reported QTL for RFI 
in beef cattle.

Besides the consistency with Sherman et al. (2009), 
among the top 188 SNP, Hapmap50758-BTA-69128 

Table 2. Chromosomal locations, nearest known genes mapped in the UMD3.1 assembly (http://bovinegenome.org/cgi-bin/gbrowse/bovine_
UMD31/), importance scores (ΔMSE%, where MSE = mean squared error), and rankings in the Random Forests (RF) and Bayesian LASSO 
(BL) analyses for the 25 SNP with highest importance scores in the RF analysis, which represent individual SNP with potentially important 
additive and pairwise epistatic associations with residual feed intake 

RF rank BL rank SNP name ΔMSE% Chromosome Gene1

1 890 ARS-USMARC-Parent-DQ888312-rs29015945 0.329 19
2 2 ARS-BFGL-NGS-25743 0.286 11
3 99 ARS-BFGL-NGS-106241 0.121 7 SPOCK1
4 28 ARS-BFGL-BAC-2599 0.109 22
5 1,059 Hapmap39438-BTA-81105 0.109 11 TBC1D8
6 40 ARS-BFGL-NGS-30448 0.106 8
7 282 ARS-BFGL-NGS-24482 0.106 12
8 48 BTA-43831-no-rs 0.103 18 LOC785907
9 30 ARS-BFGL-NGS-20025 0.100 26
10 307 ARS-BFGL-NGS-108391 0.088 1 RRP1B
11 169 ARS-BFGL-NGS-12047 0.078 18 LOC510844
12 45 Hapmap43850-BTA-43155 0.078 18
13 32 ARS-BFGL-NGS-2693 0.076 25 LOC515570
14 2,272 BTA-12313-rs29024268 0.076 18
15 3,698 ARS-BFGL-NGS-100820 0.075 22 ATXN7
16 25 Hapmap53281-rs29026129 0.068 11 AFF3
17 722 ARS-BFGL-NGS-30459 0.067 6 LOC100299906
18 1,387 ARS-BFGL-NGS-12715 0.063 11 LMAN2L
19 63 Hapmap30625-BTA-43445 0.058 18 LSM14A
20 487 BTB-00471723 0.058 11
21 530 ARS-BFGL-NGS-35632 0.057 27
22 31 BTB-00718231 0.055 18 LSM14A
23 1,839 ARS-BFGL-NGS-91390 0.055 28 RASSF4
24 132 Hapmap43378-BTA-85949 0.053 X
25 2,317 ARS-BFGL-NGS-116293 0.051 11
1SPOCK1 = sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1; TBC1D8 = TBC1 domain family, member 8 (with 
GRAM domain); RRP1B = ribosomal RNA processing 1 homolog B (Saccharomyces cerevisiae); ATXN7 = spinocerebellar ataxia type 7 protein; 
AFF3 = AF4/FMR2 family, member 3; LMAN2L = lectin, mannose-binding 2-like; LSM14A = LSM14A, SCD6 homolog A (Saccharomyces 
cerevisiae); RASSF4 = Ras association (RalGDS/AF-6) domain family member 4.

Figure 6. The density plot of (R1 − R2) for 167 traits including 
residual feed intake (RFI) that were associated with the 188 SNP with 
highest importance scores in the Random Forests analysis, where R1 is 
the percentage of SNP located in RFI QTL regions for these 188 SNP 
and R2 is the same percentage for all 42,275 whole-genome markers.
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(chromosome 3) and ARS-BFGL-NGS-10829 (chromo-
some 11) were also identified in a GWAS of RFI by Rolf 
et al. (2012) in Angus cattle. The SNP ARS-BFGL-
NGS-53179 (chromosome 12), ARS-BFGL-NGS-112862 
(chromosome 18), BTA-12313-rs29024268 (chromo-
some 18), Hapmap40907-BTA-121178 (chromosome 
19), ARS-BFGL-NGS-42120 (chromosome 19), and 
ARS-BFGL-NGS-4731 (chromosome 25) were located 
within a 0.5-Mbp region of significant markers detected 
by Rolf et al. (2012). No SNP were found to be con-
sistent with studies of Pryce et al. (2012), Snelling et 
al. (2011), and Bolormaa et al. (2011). Additionally, 
pathway analysis of the top 188 SNP revealed similar 

results to those reported by Rolf et al. (2012). One 
intriguing similarity between Rolf et al. (2012) and this 
current study was the detection of genes related to the 
calcium-regulation pathway expressed in smooth and 
cardiac muscle tissues. The inositol 1,4,5-trisphosphate 
receptor, type 1 (ITPR1) and 5-hydroxytryptamine (se-
rotonin) receptor 4, G protein-coupled (HTR4) genes 
[RefSNP (rs) numbers rs41640891 (UA-IFASA-6532) 
and rs42809616 (ARS-BFGL-NGS-113598), respective-
ly] code for cell surface receptor proteins that regulate 
the concentration of calcium ions within the cytoplasm 
and sarcoplasmic reticulum (Yamada et al., 1994; 
Khan et al., 1995; Supplementary Figure S1, available 

Table 3. Chromosomal locations, nearest known genes mapped in The Bovine Genome Database (http://bovinegenome.org), importance scores 
(ΔMSE%, where MSE = mean squared error), and rankings in the Random Forests (RF) and Bayesian LASSO (BL) analyses, for the 188 SNP 
with highest importance scores in the RF analysis that also mapped to QTL regions for residual feed intake in beef cattle in Sherman et al. 
(2009), which had been transformed into the physical position in the database 

Chromosome
Position  
(Mb) SNP name Gene1 ΔMSE% RF rank BL rank

3 86.4 ARS-BFGL-NGS-11769 LOC5309292 0.018 146 19,209
4 26.0 BTA-107055-no-rs 0.030 69 817

26.2 BTB-01383949 0.015 186 427
26.2 Hapmap49350-BTA-86626 0.035 56 358

7 13.8 ARS-BFGL-NGS-29980 KLF1 0.016 180 170
14.9 ARS-BFGL-NGS-34694 0.024 91 1,384
21.3 ARS-BFGL-NGS-76601 0.015 185 426

11 4.6 ARS-BFGL-NGS-111573 REV1 0.038 46 69
5.1 Hapmap53281-rs29026129 AFF3 0.068 16 25
5.4 ARS-BFGL-NGS-25743 0.286 2 2
5.6 ARS-BFGL-NGS-93607 0.018 141 1,320
6.1 Hapmap39438-BTA-81105 TBC1D8 0.109 5 1,059
6.2 ARS-BFGL-NGS-116293 0.051 25 2,317

36.0 BTB-00471723 0.058 20 487
12 88.9 ARS-BFGL-NGS-117411 COL4A12 0.039 39 5,948

90.7 ARS-BFGL-NGS-69018 0.022 108 5,389
90.9 ARS-BFGL-NGS-26054 GAS6 0.023 102 6,553
91.1 BTB-00509530 0.019 130 3,894

18 34.7 BTB-00708261 0.030 68 13
38.5 ARS-BFGL-NGS-12047 LOC510844 0.078 11 169
38.5 Hapmap40105-BTA-116218 0.038 44 356
38.6 Hapmap43850-BTA-43155 0.078 12 45

19 21.9 Hapmap47625-BTA-44726 0.039 40 227
29.5 Hapmap40907-BTA-121178 USP43 0.020 124 1,287
34.6 Hapmap35517-SCAFFOLD30611_18172 SLC47A1 0.018 140 2,306
35.8 ARS-BFGL-NGS-42120 0.018 144 196
36.0 Hapmap48343-BTA-45133 0.024 94 90
36.4 ARS-USMARC-Parent-DQ888312-rs29015945 0.329 1 890
39.5 ARS-BFGL-NGS-38159 0.017 159 30,122
58.3 ARS-BFGL-NGS-108439 0.021 120 801

23 45.8 BTA-56614-no-rs 0.043 33 21,294
45.9 ARS-BFGL-BAC-36395 LOC784682 0.031 66 3,324

24 19.5 ARS-BFGL-NGS-38991 0.016 168 8,142
25 8.1 ARS-BFGL-NGS-60044 0.016 177 1,729

8.2 ARS-BFGL-NGS-113918 0.022 105 484
12.1 Hapmap24109-BTC-001826 LOC100139490 0.021 112 144
13.6 ARS-BFGL-NGS-4731 PARN 0.016 171 3,081
41.1 Hapmap31341-BTC-065490 GNA12 0.020 125 1,691

1KLF1 = Krüppel-like factor 1 (erythroid); REV1 = REV1, polymerase (DNA directed); AFF3 = AF4/FMR2 family, member 3; TBC1D8 = 
TBC1 domain family, member 8 (with GRAM domain); COL4A1 = collagen, type IV, α 1; GAS6 = growth arrest-specific 6; USP43 = ubiquitin 
specific peptidase 43; SLC47A1 = solute carrier family 47, member 1; PARN = poly(A)-specific ribonuclease; GNA12 = guanine nucleotide 
binding protein (G protein) α 12.
2Single nucleotide polymorphisms located within coding region of the gene.
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Table 4. Chromosomal locations, nearest known genes mapped in the UMD3.1 assembly (http://bovinegenome.org/cgi-bin/gbrowse/bovine_
UMD31/), importance scores (ΔMSE%, where MSE = mean squared error), and rankings in the Random Forests (RF) and Bayesian LASSO (BL) 
analyses, for the 188 SNP with highest importance scores in the RF analysis that were mapped to annotated genes but not represented into QTL 
regions for residual feed intake in beef cattle in Sherman et al. (2009) 

Chromosome
Position  
(Mb) SNP name Gene1 ΔMSE% RF rank BL rank

1 41.3 BTA-95584-no-rs LOC100336601 0.037 49 147
43.6 BTB-00161977 COL8A1 0.034 59 105
44.0 Hapmap43396-BTA-89742 C1H3orf26 0.024 95 726
59.4 UA-IFASA-2169 ZBTB20 0.024 92 97
71.3 ARS-BFGL-NGS-5124 TFRC 0.017 163 9,239

119.3 ARS-BFGL-NGS-59470 LOC785299 0.047 28 162
131.3 ARS-BFGL-NGS-117553 LOC782895 0.022 106 2,699
144.6 BTA-55340-no-rs PDE9A 0.028 72 7,643
146.5 ARS-BFGL-NGS-108391 RRP1B 0.088 10 307

5 105.7 ARS-BFGL-NGS-98808 KCNA12 0.021 109 160
108.4 Hapmap34169-BES10_Contig488_621 ERC1 0.041 36 39,208

6 26.4 ARS-BFGL-NGS-59728 MTTP 0.023 101 2,908
7 0.9 BTB-01632886 MAPK9 0.043 32 478

41.1 UA-IFASA-9367 CLK4 0.018 147 505
50.5 ARS-BFGL-NGS-106241 SPOCK1 0.120 3 99
62.1 ARS-BFGL-NGS-113598 HTR4 0.017 154 13,704

10 18.4 ARS-BFGL-NGS-107048 THSD4 0.028 70 4,154
40.1 BTB-00418910 MDGA2 0.017 155 2,438

11 2.7 ARS-BFGL-NGS-12715 LMAN2L 0.063 18 1,387
48.5 ARS-BFGL-NGS-101636 REEP1 0.026 79 20,696
48.9 Hapmap43414-BTA-96067 ST3GAL5 0.018 143 4,751
67.9 BTA-07453-no-rs AAK1 0.020 128 298
68.7 ARS-BFGL-NGS-10829 CAPN14 0.024 98 279

12 77.6 BTA-29995-no-rs HS6ST3 0.028 74 18,844
13 76.0 ARS-BFGL-NGS-23787 SLC13A3 0.015 188 790

77.6 ARS-BFGL-NGS-97619 PREX1 0.018 148 1,482
14 21.0 ARS-BFGL-NGS-102399 LOC512910 0.020 123 3,651
16 30.8 BTA-96954-no-rs CDC42BPA 0.026 78 707

35.8 BTA-06703-rs29021060 WDR64 0.021 116 12,282
69.9 BTB-01188142 KCNK2 0.018 145 475

18 52.4 ARS-BFGL-NGS-17369 ZNF404 0.015 183 1,715
52.5 ARS-BFGL-NGS-112862 LOC100141003 0.019 135 1,076
55.6 ARS-BFGL-NGS-31529 LMTK3 0.033 62 4,218
56.2 BTA-43831-no-rs LOC785907 0.103 8 48

20 5.5 BTB-01104181 CPEB4 0.017 161 9,889
21 69.9 ARS-BFGL-NGS-1345 KLC1 0.023 99 324
22 21.8 UA-IFASA-6532 ITPR1 0.019 132 399

25.1 BTA-53914-no-rs CNTN6 0.022 107 1,193
22 32.6 Hapmap52235-ss46526582 UBA32 0.015 184 437

37.6 ARS-BFGL-NGS-100820 ATXN7 0.075 15 3,698
39.2 BTB-00846141 PTPRG 0.016 165 10,112

26 28.2 Hapmap46811-BTA-40771 SORCS1 0.035 53 242
28 4.4 Hapmap47519-BTA-117732 LOC614741 0.047 27 14,142

5.3 ARS-BFGL-NGS-282 SIPA1L2 0.016 173 1,458
45.0 ARS-BFGL-NGS-91390 RASSF4 0.055 23 1,839
45.0 ARS-BFGL-NGS-1761 TMEM72 0.016 166 49

X 1.4 BTB-01316213 LOC526880 0.016 167 249
3.8 ARS-BFGL-NGS-82123 SEPT6 0.016 175 686

1COL8A1 = collagen, type VIII, α 1; ZBTB20 = zinc finger and BTB domain containing 20; TFRC = transferrin receptor (P90, CD71); PDE9A = 
phosphodiesterase 9A; RRP1B = ribosomal RNA processing 1 homolog B (Saccharomyces cerevisiae); KCNA1 = potassium voltage-gated channel, 
shaker-related subfamily, member 1; ERC1 = ELKS/RAB6-interacting/CAST family member 1; MTTP = microsomal triglyceride transfer protein; 
MAPK9 = mitogen-activated protein kinase 9; CLK4 = CDC-like kinase 4; SPOCK1 = sparc/osteonectin, cwcv and kazal-like domains proteogly-
can (testican) 1; HTR4 = 5-hydroxytryptamine (serotonin) receptor 4, G protein-coupled; THSD4 = thrombospondin, type I, domain containing 4; 
MDGA2 = MAM domain containing glycosylphosphatidylinositol anchor 2; LMAN2L = lectin, mannose-binding 2-like; REEP1 = receptor acces-
sory protein 1; ST3GAL5 = ST3 β-galactoside α-2,3-sialyltransferase 5; AAK1 = AP2 associated kinase 1; CAPN14 = calcium-activated neutral 
proteinase 14; HS6ST3 = heparan sulfate 6-O-sulfotransferase; SLC13A3 = solute carrier family 13 (sodium-dependent dicarboxylate transporter), 
member 3; PREX1 = phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1; CDC42BPA = CDC42 binding protein kinase α 
(DMPK-like); WDR64 = WD repeat domain 64; KCNK2 = potassium channel, subfamily K, member 2; ZNF404 = zinc finger protein 404; LMTK3 
= lemur tyrosine kinase 3; CPEB4 = cytoplasmic polyadenylation element binding protein 4; KLC1 = kinesin light chain 1; ITPR1 = inositol 
1,4,5-trisphosphate receptor, type 1; CNTN6 = contactin 6; UBA3 = ubiquitin-like modifier activating enzyme 3; ATXN7 = spinocerebellar ataxia 
type 7 protein;  PTPRG = protein tyrosine phosphatase, receptor type, G; SORCS1 = sortilin-related VPS10 domain containing receptor 1; SIPA1L2 
= signal-induced proliferation-associated 1 like 2; RASSF4 = Ras association (RalGDS/AF-6) domain family member 4; TMEM72 = transmembrane 
protein 72; SEPT6 = septin 6.
2Single nucleotide polymorphism located within coding region of the gene.
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online at http://dx.doi.org/10.3168/jds.2013-6237). 
Identification of this pathway in both studies suggests 
that myometrial activity (i.e., muscle contraction and 
relaxation) may influence RFI in both dairy and beef 
cattle, which would be related to the findings of Herd 
and Arthur (2009) regarding physical activity and RFI 
variance.

As shown in Tables 3 and 4, mapping to the UMD3.1 
assembly, 68 different annotated genes were associated 
with 74 of the 188 SNP, with the highest importance 
scores in the RF analysis. Four SNP [ARS-BFGL-
NGS-11769 (BTA3), ARS-BFGL-NGS-98808 (BTA5), 
ARS-BFGL-NGS-117411 (BTA12), and Hapmap52235-
ss46526582 (BTA22)] are in the coding regions of 4 
different genes [LOC530929; potassium voltage-gated 
channel, shaker-related subfamily, member 1 (KCNA1); 
collagen, type IV, α1 (COL4A1); and ubiquitin-like 
modifier activating enzyme 3 (UBA3)]. The SNP in 
COL4A1 also mapped to a QTL region for RFI in 
beef cattle (Sherman et al., 2009). Additionally, 6 
genes [LOC100299906, RAR-related orphan recep-
tor A (RORA), vacuolar protein sorting 13 homolog 
B (VPS13B), SCD6 homolog A (Saccharomyces cere-
visiae) (LSM14A), peroxisome proliferator-activated 
receptor δ (PPARD), and (loc515570)] were mapped 
by pairs of adjacent SNP (Table 5). Some of these 
are in high linkage disequilibrium, as indicated by the 
coefficient of determination values in Table 5. With 
the exception of RORA, coding regions are located 
between the 2 SNP. Because the current BovineSNP50 
BeadChip cannot provide greater resolution, additional 
studies are needed to investigate genetic variation near 
or within these genes. Among closest annotated RefSeq 
genes, the PPARD gene encodes a receptor protein that 
regulates the size and number of peroxisomes in the 

cell (Xu et al., 1999). Polymorphisms in this gene have 
been linked to obesity in humans (Shin et al., 2004), 
so it would follow that the alleles of PPARD identified 
in this study may affect feed efficiency in cattle. Gene 
functional analysis revealed an enrichment of integral 
membrane protein and ion transport genes in this gene 
data set (Supplementary Table S2, available online at 
http://dx.doi.org/10.3168/jds.2013-6237). The PAN-
THER biological process analysis also revealed a high 
percentage of genes involved in cellular communication 
(33.3%) and cellular processes (43%) (Supplementary 
Table S3). Cell surface receptors such as those identi-
fied in this study often affect critical cellular secondary 
messaging systems and are excellent starting points 
for future studies investigating RFI in cattle. Pathway 
enrichment scores from both PANTHER and DAVID 
web tools were calculated against the entire gene list for 
each organism. Although the use of the actual lists of 
genes within 37,000 bp of each BovineSNP50 SNP posi-
tion would result in more-accurate enrichment scores, 
limitations of the existing web tools prevent the use of 
such large, specialized lists. Regardless, only approxi-
mately 14% of the RefSeq genes were not within our 
designated cutoff for association with BovineSNP50 
SNP, so the entire gene list is a close approximation 
to our actual background gene list for this calculation.

CONCLUSIONS

The importance scores generated by RF algorithms 
can be useful for identifying individual SNP that have 
large additive and epistatic effects on RFI or other 
economically important traits. Frequently occurring 
descendant pairs can be discovered by examining the 
structure of individual trees within the RF, and in this 

Table 5. Chromosomal locations of 6 genes mapped in the assembly UMD3.1 (http://bovinegenome.org/cgi-bin/gbrowse/bovine_UMD31/) 
by 12 adjacent SNP that ranked among the 188 SNP with highest importance scores in the Random Forests analysis, as well as linkage 
disequilibrium (as measured by R2) between these SNP 

Gene1 Adjacent SNP Chromosome

Distance  
between  
SNP (kb) R2

Coding  
region  

between?
No. of SNP  

between

LOC100299906 ARS-BFGL-NGS-30459 6 74.9 0.37 Yes 1BTA-94473-no-rs
RORA BTA-70155-no-rs 10 24.5 0.66 No 0BTB-00426034
VPS13B BTA-35285-no-rs 14 357.4 0.20 Yes 6ARS-BFGL-BAC-24806
LSM14A BTB-00718231 18 38.8 1.00 Yes 0Hapmap30625-BTA-43445
PPARD ARS-BFGL-NGS-40073 23 28.6 0.87 Yes 0ARS-BFGL-NGS-61728
LOC515570 ARS-BFGL-NGS-2693 25 6.3 0.86 Yes 0ARS-USMARC-Parent-AY941204-rs17872131
1RORA = RAR-related orphan receptor A; VPS13B = vacuolar protein sorting 13 homolog B; LSM14A = LSM14A, SCD6 homolog A 
(Saccharomyces cerevisiae); PPARD = peroxisome proliferator-activated receptor δ.
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manner, possible pairs of epistatic SNP can be iden-
tified for further study. Future studies, perhaps with 
larger data sets, can add to our knowledge regarding 
the genetic mechanisms underlying RFI in dairy cattle 
and the possible roles of annotated genes that were 
mapped by important SNP in our RF analysis. Lastly, 
the consistency in results between this study and stud-
ies of RFI in beef cattle should be explored further, 
as ongoing projects to describe the underlying genetic 
basis of RFI are currently underway in both beef and 
dairy cattle.
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