
8014

J. Dairy Sci.  96 :8014–8023
http://dx.doi.org/  10.3168/jds.2013-6969  
© American Dairy Science Association®,  2013 .

 ABSTRACT 

 Computerized mating programs using genomic in-
formation are needed by breed associations, artificial-
insemination organizations, and on-farm software 
providers, but such software is already challenged by 
the size of the relationship matrix. As of October 2012, 
over 230,000 Holsteins obtained genomic predictions 
in North America. Efficient methods of storing, com-
puting, and transferring genomic relationships from a 
central database to customers via a web query were 
developed for approximately 165,000 genotyped cows 
and the subset of 1,518 bulls whose semen was available 
for purchase at that time. This study, utilizing 3 breeds, 
investigated differences in sire selection, methods of as-
signing mates, the use of genomic or pedigree relation-
ships, and the effect of including dominance effects in a 
mating program. For both Jerseys and Holsteins, selec-
tion and mating programs were tested using the top 50 
marketed bulls for genomic and traditional lifetime net 
merit as well as 50 randomly selected bulls. The 500 
youngest genotyped cows in the largest herd in each 
breed were assigned mates of the same breed with lim-
its of 10 cows per bull and 1 bull per cow (only 79 cows 
and 8 bulls for Brown Swiss). A dominance variance of 
4.1 and 3.7% was estimated for Holsteins and Jerseys 
using 45,187 markers and management group deviation 
for milk yield. Sire selection was identified as the most 
important component of improving expected progeny 
value, followed by managing inbreeding and then inclu-
sion of dominance. The respective percentage gains for 
milk yield in this study were 64, 27, and 9, for Holsteins 
and 73, 20, and 7 for Jerseys. The linear programming 
method of assigning a mate outperformed sequential 
selection by reducing genomic or pedigree inbreeding 
by 0.86 to 1.06 and 0.93 to 1.41, respectively. Use of ge-

nomic over pedigree relationship information provided 
a larger decrease in expected progeny inbreeding and 
thus greater expected progeny value. Based on lifetime 
net merit, the economic value of using genomic rela-
tionships was >$3 million per year for Holsteins when 
applied to all genotyped females, assuming that each 
will provide 1 replacement. Previous mating programs 
required transferring only a pedigree file to customers, 
but better service is possible by incorporating genomic 
relationships, more precise mate allocation, and domi-
nance effects. Economic benefits will continue to grow 
as more females are genotyped. 
 Key words:   mating program , genomic relationship , 
dominance , genotype 

 INTRODUCTION 

 Phenotypic performance, animal viability, and dairy 
farm profitability can be affected negatively by decreased 
heterozygosity and increased frequency of harmful 
recessives that result from inbreeding. Computerized 
mating programs have helped breeders reduce pedigree 
inbreeding by identifying matings between animals 
with fewer than average ancestors in common (Weigel, 
2001). In the genomic era, dense SNP markers across 
the whole genome have been widely used for genomic 
selection. Use of genomic relationships is the best way to 
reduce progeny homozygosity, even for other SNP that 
are not genotyped directly (Pryce et al., 2012; Sonesson 
et al., 2012). Breeders should use genomic relationships 
to control genomic inbreeding when selection is based 
on genomic EBV, just as pedigree-based relationships 
were used to control inbreeding when selection was 
based on traditional EBV computed from pedigree and 
phenotypic performance (Sonesson et al., 2012). Use of 
genomic rather than pedigree relationships in mating 
plans resulted in almost twice the reduction in progeny 
homozygosity compared with random mating; this ad-
ditional reduction in genomic inbreeding of 1 to 2% was 
worth $5 to $10 for Australian Profit Ranking (Pryce 
et al., 2012). New programs to minimize genomic in-
breeding by comparing genotypes of potential mates 
are needed by the dairy industry. 

  Mating programs including genomic relationships and dominance effects  1 
  C.   Sun ,*2  P. M.   VanRaden ,†  J. R.   O’Connell ,‡  K. A.   Weigel ,§ and  D.   Gianola §
   * National Association of Animal Breeders, Columbia, MO 65205 
   † Animal Improvement Programs Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705-2350 
   ‡ School of Medicine, University of Maryland, Baltimore 21201 
   § Department of Dairy Science, University of Wisconsin–Madison, Madison 53706 

  

  

 Received April 29, 2013.
 Accepted August 16, 2013.
 1   The use of trade, firm, or corporation names in this publication is 

for the information and convenience of the reader. Such use does not 
constitute an official endorsement or approval by the US Department 
of Agriculture or the Agricultural Research Service of any product or 
service to the exclusion of others that may be suitable. 

 2  Corresponding author:  Chuanyu.Sun@ars.usda.gov 



Journal of Dairy Science Vol. 96 No. 12, 2013

GENOMIC-BASED MATING PROGRAMS 8015

Genomic relationships can indicate the realized pro-
portion of the genome that is identical by descent or by 
state (VanRaden, 2008; Hayes et al., 2009). Genomic 
mating programs can avoid inbreeding, even in com-
mercial herds that have incomplete or no pedigrees 
(Bjelland et al., 2012). Genetic evaluations typically 
predict the additive value of the alleles of an animal 
but ignore the inbreeding depression that occurs for 
most traits when related parents are mated. Including 
a regression on inbreeding in the model can remove 
the effects of past inbreeding. The true genetic merit 
of an animal should include its additive value as well 
as an adjustment for mean relationship to the popula-
tion of potential mates (VanRaden and Smith, 1999). If 
mean relationships can be calculated, the regression on 
inbreeding can be used both to remove past effects of 
inbreeding and to predict future effects. Mean relation-
ships are also useful for identifying outcross animals.

Since 2008, the US dairy industry has received ge-
nomic inbreeding coefficients for animals as well as 
estimates of genomic future inbreeding, which is half 
the mean relationship of an animal to the current popu-
lation (VanRaden et al., 2011b). Individual genomic re-
lationships with potential mates also could be provided. 
Traditional US evaluations have been adjusted since 
2005 for expected future inbreeding computed from 
pedigree relationships (VanRaden, 2005) but could be 
adjusted for genomic future inbreeding instead. Mating 
programs should remove any adjustment for expected 
or genomic future inbreeding from the PTA of each 
mate before including the inbreeding loss for the poten-
tial mating (VanRaden and Smith, 1999).

Mates can be assigned using simple methods such 
as sequential selection of least-related mates (Pryce et 
al., 2012) or linear programming (Jansen and Wilton, 
1985; Weigel and Lin, 2000). Optimal contribution 
theory can minimize genomic inbreeding in the selec-
tion step (Sonesson et al., 2012) with an assumption of 
random mating, and then an additional mating step is 
required. In theory, combining the selection and mat-
ing steps could be better than separate steps. Linear 
programming uses simultaneous rather than sequential 
solving to avoid more-related pairs and find less-related 
pairs. Weigel and Lin (2000) reported that linear pro-
gramming had a $17 advantage per mating in Holstein 
estimated lifetime profit over using a simple limit to 
avoid inbreeding and a $37 advantage per mating over 
random mating.

Dominance effects could also be included in mating 
programs to estimate inbreeding losses more precisely 
(Toro and Varona, 2010). Misztal et al. (1997) reported 
dominance variances for Holstein stature that were 11 
to 16% of phenotypic variance. However, dominance 
effects have been rarely included in genetic evaluations 

because of computational complexity and lack of sta-
tistical reliability for estimates of variance components. 
Initially, most countries only genotyped bulls and a few 
females, but the increasing availability of cows with 
phenotypes and genotypes in the US lactation and 
genotype databases (Figure 1) now provides an oppor-
tunity to estimate dominance effects and include those 
in mating programs.

The objectives of this study were to investigate per-
formance of mating programs that include genomic 
relationships and dominance effects, to develop a 
method of rapid delivery of genomic relationships to 
the industry, and to compare 3 mating strategies (lin-
ear programming, simple method, and random mating) 
for maximizing expected progeny value (EPV) for milk 
yield or lifetime net merit (LNM).

MATERIALS AND METHODS

Data

Genotypes were available from the US Department 
of Agriculture (Beltsville, MD) database as of Octo-
ber 2012 for 7,623 Brown Swiss, 28,618 Jerseys, and 
233,482 Holsteins (Table 1). Genotyped females in-
cluded 1,343 Brown Swiss, 21,767 Jerseys, and 165,540 
Holsteins. Only 80 Brown Swiss, 287 Jersey, and 1,518 
Holstein bulls were being marketed at that time. To 
estimate dominance variances and effects, 8,323 Jersey 
and 30,583 Holstein cows with both a genotype and a 
phenotype were employed. However, only a few hun-
dred genotyped Brown Swiss cows also had phenotypes.

Genotypes were from 6 different SNP arrays: Illumina 
Bovine3K, Illumina BovineLD, Illumina BovineSNP50, 
and Illumina BovineHD (Illumina Inc., San Diego, CA) 
and GeneSeek Genomic Profiler and GeneSeek Genom-
ic Profiler HD (GeneSeek, Lincoln, NE). All genotypes 
were restricted and imputed to a BovineSNP50 basis 
using findhap.f90 software (VanRaden et al., 2011a) 
before estimating genomic breeding values and domi-
nance effects.

Genomic Relationships

Mating programs are often applied to individual 
herds, whereas genotypes are stored mainly in central 
databases. The genomic relationship matrix (G) for all 
Holsteins in this study was a 230,000 × 230,000 table. 
To reduce computing time and disk space required, 
relationships of young animals with each other are not 
currently computed or stored by the US Department 
of Agriculture in the genotype database. Operation-
ally, genomic relationships of each female to currently 
marketed bulls could be computed within a central 
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database and provided to cooperator databases for 
use in existing mating programs. Potential options for 
providing the genomic relationship matrix required for 
a genomic mating program include (1) computation of 
relationships only between requested females and bulls 
via a web query, (2) computation of relationships of all 
genotyped females with each marketed genotyped bull 
(e.g., >160,000 females and >1,500 bulls for Holsteins), 
or (3) computation of relationships between all geno-
typed animals.

For feasibility and usability, option 2 seems simplest, 
and option 3 is more difficult because of quadratic 
growth of the relationship table. Although the 230,000 
animal × 45,187 SNP genotype incidence matrix (Z) 
for Holsteins fit in computer memory with 1 byte 
per genotype, ZZ  exceeded the 256 GB of available 
memory because multiplication needed 8 bytes (double 
precision). Therefore, ZZ  had to be computed in sec-

tions using the parallel subroutine DGEMM (Intel Cor-
poration, 2013), and memory was reused again within 
each section.

For option 2, the genomic relationships of all geno-
typed females with each of the marketed genotyped 
bulls were computed and stored for later extraction 
of information from G for a subset of animals based 
on specified animal keys to simulate breeder requests 
for specific animals. For ease of use and simple inter-
pretation, G is adjusted by regression to make mean 
diagonals and mean off-diagonals of G equal to mean 
diagonals and mean off-diagonals of the pedigree rela-
tionship matrix (A). From coefficients of A and G, a 
regression coefficient and an intercept were calculated 
using 2 equations and 2 unknowns and output during 
monthly calculation of A and G. The same estimated 
regression coefficient and intercept were used for all 
options to ensure consistent calculation, even if rela-

Figure 1. The number of female genotypes in the US database by SNP density of genotyping chip (<50K or ≥50K) and date of genomic 
evaluation. The <50K genotypes were from Illumina Bovine3K, Illumina BovineLD (Illumina Inc., San Diego, CA), and GeneSeek Genomic 
Profiler BeadChips (GeneSeek, Lincoln, NE); the ≥50K genotypes were from Illumina BovineSNP50, GeneSeek Genomic Profiler HD, and 
Illumina BovineHD BeadChips. Color version available in the online PDF.

Table 1. Numbers of animals used for calculating the genomic relationship matrix and dominance effect and 
used in mating programs by breed 

Animals
Brown  
Swiss Jersey Holstein

Genotyped population 7,623 28,618 233,482
Animals in pedigrees of genotyped animals 35,193 138,247 656,079
Marketed males 80 287 1,518
Genotyped cows 1,343 21,767 165,540
Genotyped cows with phenotypes for dominance estimation — 8,323 30,583
Mating programs    
 Males 8 50 50
 Cows 79 500 500
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tionships for only the subset of animals were computed 
for access through a web query. Genotype and pedigree 
files were prepared for requested animals, and a subset 
G was generated.

Models With Dominance

Linear mixed models were used to estimate additive 
and dominance variance components:

 y 1u W a W d e= + + +a d , 

and to predict genetic effects:

 y 1u Z a Z d e= + + +a d* * , 

where y is a vector of management group deviations for 
milk yield; u is the intercept; a and d are vectors of 
additive and dominance effects, respectively, for ani-
mals; a* and d* are vectors of additive and dominance 
effects, respectively, for SNP; Wa, Wd, Za, and Zd are 
incidence matrices; and e is the vector of random re-
siduals. In addition, Za is a centered genotype matrix 
with each Za equal to a genotype code (0, 1, or 2) minus 
2pi, where pi is the frequency of the second of 2 alleles 
at locus i. For homozygous alleles, Zd equals 0 − 2piqi, 
where qi is the frequency of the first alleles at locus i; 
for heterozygous alleles, Zd equals 1 − 2piqi (Su et al., 
2012a). Then, a G∼ N a0 2, ,σ( )  d D∼ N d0 2, σ( ), 
a I* , ,∼ N a0 2σ( )  d I* 0, ,2∼ N dσ( )  and e I∼ N e0, ,2σ( )  where 
G and D are additive and dominance genomic relation-
ship matrices, I is an identity matrix, and σa

2, σd
2, and 

σe
2 are additive, dominance, and residual variances, re-

spectively. The genomic relationship matrices were 
constructed based on information from genome-wide 
markers (VanRaden, 2008; Su et al., 2012a). Variance 
components were estimated using average information-
REML (Gilmour et al., 1995) as implemented in the 
software MMAP (mixed models for pedigrees and 
populations; O’Connell, 2008, 2013); MMAP incorpo-
rates Intel MKL (Intel Corporation, 2013) for optimized 
parallel likelihood calculation.

Linear Programming

Linear programming is a technique for the optimi-
zation of a linear objective function that is subject 
to constraints of linear equality and inequality:

 

f z z x z x z x

z x z x z x

z

ij c c

c c

max 11 11 12 12 1 1

21 21 22 22 2 2

( )= + + + +

+ +…+ +

…

�

bb b b b bc bcx z x z x1 1 2 2+ +…+ ,

 

where zij is milk yield or LNM of progeny; b and c are 
the numbers of bulls and females used in the mating 
programs, respectively; constraints are
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and variable bounds are xij = 0 or 1 (i = 1, 2, …, b; j 
= 1, 2, …, c).

Mating Programs

To compare mating programs using genomic and 
pedigree relationship matrices, the 500 youngest (i.e., 
born after October 1, 2010) genotyped females were 
selected for Jerseys and Holsteins from the largest herd 
for each breed. The top 50 marketed bulls of each breed 
for genomic LNM and traditional LNM as well as 50 
randomly selected marketed bulls were used as poten-
tial mates. Only 79 females were in the largest Brown 
Swiss herd, and 8 bulls were selected as potential mates. 
Matings were limited to 10 females per bull and 1 bull 
per female.

Mates were assigned using linear programming, the 
sequential selection of least-related mates (Pryce et al., 
2012), or random mating. Let BLNM be defined as the 
loss of LNM per 1% inbreeding, EFI is expected future 
inbreeding, Gsire,dam is the genomic relationship between 
sire and dam, and n is the number of matings, which 
is equal to the number of genotyped females. For each 
method of choosing mates, mean EPV was
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where GLNM is genomic LNM from official genomic 
evaluation, which includes a penalty for EFI (VanRaden, 
2005). To avoid double counting EFI, the penalty for 
EFI should be removed from each mate (as above) 
before including the inbreeding loss for this specific 
mating (VanRaden and Smith, 1999). This replaces the 
mates’ average relationship to the population used for 
selection with their relationship to each other used for 
mating. For all mating methods, a BLNM of $23.11 was 
assumed (Weigel and Lin, 2000). All combinations of 
genomic and traditional LNM and genomic and tradi-
tional inbreeding were examined.

Mating programs including dominance effects were 
investigated only for milk yield. For each mating, 3 
probabilities (2 homozygotes and 1 heterozygote) of 
progeny genotypes were generated based on parent 
genotypes. The dominance effect for each progeny was 
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obtained by summing over all loci and the 3 genotype 
probabilities, giving

 D d Z si
i

s

d
j
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= =
∑ * (

1 1
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33
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where di
* is dominance deviation for SNP i, and s is the 

number of SNP. Mating strategies were the same as for 
LNM, but mean EPV for milk yield was
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where GPTA is genomic PTA from official genomic 
evaluation, and Bmilk is the loss of milk yield per 1% 
inbreeding, which was assumed to be 30.4 kg for all 
mating methods.

For the method of sequential selection of least-related 
mates (Pryce et al., 2012), a matrix B containing EPV 
of all potential matings was created first, with columns 
of the matrix corresponding to dams and rows to sires. 
Then, another matrix of selected mates M was con-
structed, where Mij = 1 if the corresponding element Bij 
was the highest value in the column Bj; all other ele-
ments in that column were set to 0 and that dam was 
excluded from further matings. The maximum number 
of matings allowable for each sire was set to 10. If Bij 
corresponded to a sire that had already been assigned 
to 10 other matings, then the sire-dam combination 
with the next highest value in Bj was selected. If that 
bull also already had 10 matings allocated, then again, 
the next highest element in Bj was selected, and so on.

RESULTS
Genomic Relationships

For genotyped Holstein females and marketed bulls, 
calculation and storage of G (Table 2) required >16 

h and >400 GB, which indicates that providing G for 
the entire genotyped Holstein population to breeders is 
impractical. Nearly 2 h was required to extract a subset 
G for 1,817 Holsteins. The programs were written using 
Fortran 90; R and SAS languages would be slower for 
a file of >400 GB. For small data sets (such as Brown 
Swiss and Jerseys), computation of relationships of all 
genotyped females with each marketed genotyped bull 
(option 2) worked well.

Computing relationships only for specified animals 
was the best choice to save calculation time and disk 
storage. Even though regression coefficients from option 
2 were used instead of direct regression of A on G while 
calculating G for the subset, the genomic relationships 
for the subset were verified to be identical for options 
1 (computation of relationships only between requested 
females and bulls via a web query) and 2. The advan-
tage of option 1 for large data sets (e.g., Holsteins and 
Jerseys) was obvious: 6 s to create G for 585 Jerseys 
and 31 s for 1,817 Holsteins.

Mating Program Without Dominance

Table 3 shows the EPV for matings to selected bulls 
using linear programming or sequential least-related 
selection relative to random selection and random mat-
ing. For each group of bulls, EPV was higher for linear 
programming than for the sequential method, and both 
of those methods were better than random mating. 
For all methods and groups of bulls, EPV was higher 
when the genomic rather than the pedigree relationship 
was used as the mate inbreeding source. The EPV was 
higher when mates were from the top 50 bulls for ge-
nomic LNM rather than the top 50 for traditional LNM 
or random bulls. For matings to the top 50 bulls for 
genomic LNM, genomic LNM as the mate EBV source, 
and a genomic source for mate inbreeding, the increase 
in EPV for the sequential method over random mating 
was only 64, 72, and 76% of the corresponding increase 
for linear programming for Brown Swiss, Holsteins, 
and Jerseys, respectively; if 50 randomly selected bulls 

Table 2. Computation times and disk storage required for the genomic relationship matrix (G) for genotyped 
cows and marketed bulls (Table 1) and computation times for extraction or recalculation of G for a subset of 
animals 

Breed

G for genotyped cows  
and marketed bulls

G for subset of genotyped cows 
and marketed bulls

Computation 
time (h:min:s)

Disk 
storage (Mbyte)

Animals  
(no.)

Computation time2

Extraction  
(h:min:s)

Recalculation  
(s)

Brown Swiss 00:00:13 31 338 00:00:01 4
Holstein 16:22:42 425,855 1,817 01:58:06 31
Jersey 00:17:11 7,422 585 00:01:46 6
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were used instead, the corresponding percentages were 
58, 51, and 59. By using genomic rather than pedigree 
inbreeding for Holstein matings based on linear pro-
gramming, EPV were higher by $32 for the top bulls 
for genomic LNM, $30 for the top bulls for traditional 
LNM, and $30 for randomly selected bulls.

Table 3 also shows the mean genomic inbreeding for 
progeny. When selection was among the top 50 bulls 
for genomic LNM and based on genomic relationships, 
mean genomic inbreeding of progeny using linear pro-
gramming decreased 1.03, 0.86, and 1.06 percentage 
points compared with using the sequential method for 
Brown Swiss, Holsteins, and Jerseys, respectively; cor-
responding decreases when selection was based on pedi-
gree relationships were 0.93, 1.41, and 1.40 percentage 
points. Regardless of how bulls were selected, the use of 
linear programming rather than the sequential method 
decreased progeny inbreeding, as did the use of genomic 
rather than pedigree relationships. The cost of com-
puting time for linear programming can be ignored as 
computing time was only a few seconds when 50 bulls 
and 500 females were used.

Dominance

Genomic variance components and heritabilities for 
milk yield are given in Table 4. Additive and domi-
nance variances were 14.9 and 4.1% of phenotypic vari-
ance, respectively, for Holsteins and 16.7 and 3.7% of 
phenotypic variance for Jerseys. Absolute values for 
Holstein SNP dominance deviations were larger than 
were those for Jerseys. The difference between breeds 
partly reflects scaling; the trait mean and variance were 
larger for Holsteins than for Jerseys.

Mating Program With Dominance

The results of mating programs that include a domi-
nance effect are given in Table 5. Regardless of bull 
group, mating method, or inbreeding source, EPV for 
milk yield of Holsteins and Jerseys was higher when 
dominance effects were included in addition to addi-
tive effects and inbreeding. For the top 50 bulls for 
genomic PTA milk, EPV from linear programming 
increased 86 kg for Holsteins and 52 kg for Jerseys 
by including dominance effects compared with 96 kg 
and 50 kg, respectively, using the sequential method. 
Similar increases were found when bulls were selected 
randomly. For matings to the top 50 bulls for genomic 
PTA milk, a dominance effect included, and a genomic 
source for mate inbreeding, the increase in EPV for 
the sequential method over random mating was only 
78 and 64% of the corresponding increase for linear 
programming for Holsteins and Jerseys, respectively; 

if 50 randomly selected bulls were used instead, the 
corresponding percentages were 69 and 62. The EPV 
from mating programs with dominance effects included 
did not improve much by using genomic rather than 
pedigree relationships.

When selection was among the top 50 bulls for ge-
nomic PTA milk and based on genomic inbreeding, 
mean genomic inbreeding of progeny (Table 5) using 
linear programming was 5.38% for Holsteins and 4.34% 
for Jerseys when a dominance effect was included and 
4.62 and 3.63%, respectively, without the dominance 
effect. Corresponding percentages for 50 bulls selected 
randomly were 5.52 and 4.10% with dominance and 4.62 
and 3.39% without dominance. Progeny inbreeding can 
be decreased by using linear programming instead of 
the sequential method and using genomic rather than 
pedigree relationships for the mating program with a 
dominance effect included.

DISCUSSION

Delivering genomic relationships from a central data-
base to industry is a key step for implementing mating 
programs. Computation of relationships only between 
requested females and bulls via a web query (option 1) 
was the best solution, and the advantage was obvious 
for large data sets (i.e., Holsteins). Computing time 
to create a genomic relationship matrix for 1,817 ani-
mals was only 31 s. Option 1 not only saved computing 
time but also avoided storing the large G. If all the 
requested animals have genotypes, generating G is easy 
with option 1.

What should breeders do if some animals to be mated 
have not been genotyped? With the single-step blend-
ing method (Legarra et al., 2009; Aguilar et al., 2010), 
a genetic relationship matrix can be constructed by 
combining SNP marker and pedigree information. The 
G for nongenotyped animals (G0) is 
A A G A A A A A A21 11

1
11

1
12 22 21 11

1
12

− − −+ −α , where A11 is a 
submatrix of A for genotyped animals, A22 is a subma-
trix of A for nongenotyped animals, A12 and A21 are 
submatrices of A describing the relationship between 
genotyped and nongenotyped animals, and Gα = αG + 
(1 − α)A11 is the weighted genomic relationship for 
genotyped animals, where α is the relative weight 
placed on genomic relationships and (1 − α) is the 
weight placed on pedigree-based relationships; G A Aα 11

1
12

−  
represents the genomic relationship between genotyped 
and nongenotyped animals. Su et al. (2012b) found 
that α had a small effect on reliabilities of genomic 
EBV but a large effect on the variation of genomic 
EBV. The effect of α on genomic relationships for non-
genotyped animals and mating programs needs to be 
investigated.
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Table 3. Expected progeny value (EPV) and mean genomic inbreeding of progeny from mating of marketed bulls selected for lifetime net merit (LNM) or randomly with the 
youngest genotyped cows1 of the same breed in the same herd by mating method, mate EBV and inbreeding sources, and breed 

Selected bulls Mating method
Mate EBV 
source

Mate 
inbreeding 
source

EPV2 ($)

 

Progeny inbreeding (%)

Brown  
Swiss Holstein Jersey

Brown  
Swiss Holstein Jersey

Top 50 for genomic LNM Linear programming Genomic LNM Genomic 205 494 358  6.94 5.17 3.72
Pedigree 184 462 326  7.87 6.58 5.12

Sequential least-related3 Genomic LNM Genomic 181 474 333  7.97 6.03 4.78
Pedigree 175 450 312  8.27 7.09 5.70

Random —  138 422 255  9.83 8.31 8.17
Top 50 for traditional LNM Linear programming Traditional LNM Genomic 158 393 307  6.11 4.87 3.41

Pedigree 136 363 274  7.07 6.15 4.82
Sequential least-related3 Traditional LNM Genomic 127 372 278  7.45 5.79 4.66

Pedigree 124 350 263  7.60 6.72 5.32
Random — — 107 314 214  8.36 8.30 7.43

Random 50 Linear programming Genomic LNM Genomic 64 70 78  6.64 4.46 3.65
Pedigree 43 40 42  7.56 5.77 5.22

Traditional LNM Genomic 64 70 78  6.64 4.46 3.65
Pedigree 45 40 41  7.49 5.78 5.26

Sequential least-related3 Genomic LNM Genomic 37 36 46  7.83 5.97 5.04
Pedigree 27 21 29  8.26 6.58 5.76

Traditional LNM Genomic 32 39 46  8.05 5.84 5.05
Pedigree 22 24 27  8.47 6.48 5.86

Random — — 0 0 0  9.30 7.51 7.04
1Born after October 1, 2010.
2Relative to randomly selected bulls that were randomly mated.
3Pryce et al. (2012).
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Traditionally, mating plans have constrained the 
inbreeding of predicted progeny through A (e.g., King-
horn, 1998, 2011). Elements of A are the expected pro-
portion of the genome that is identical by descent given 
pedigree relationships between individuals and are 
double the inbreeding coefficient for predicted progeny. 
Genomic information offers new possibilities to control 
progeny inbreeding, and mating programs using G can 
increase EPV and decrease progeny inbreeding com-
pared with using A. The decrease in Holstein genomic 
inbreeding was 1.41% when mate genomic rather than 
pedigree inbreeding was used with linear programming 
and mate genomic LNM. The decrease was slightly 
larger than that estimated by Pryce et al. (2012) and 
had a total annual value of ($494 − $462)(120,989) = 
$3,871,648 when applied to 120,989 females genotyped 

in the last 12 mo (ending June 2013), assuming that 
each will provide 1 replacement in its lifetime. The dol-
lar advantage per mating was similar to the finding 
of Pryce et al. (2012) because the Australian Profit 
Ranking measures per lactation rather than lifetime 
net profit and the exchange rate for US and Australian 
dollars is close to 1.

Using optimal contribution selection (Wray and 
Goddard, 1994; Meuwissen, 1997), the effect of ge-
nomic selection on inbreeding rate was investigated by 
Sonesson et al. (2010). They found that both genomic 
and pedigree relationships were successful strategies 
to control inbreeding rate under genomic selection. 
However, the genomic inbreeding rate was around 3 
times higher when using pedigree rather than genomic 
optimal contribution. Optimal contribution selection 

Table 4. Variance components, heritabilities, and SNP dominance deviations for milk yield of Holsteins and 
Jerseys 

Parameter Holstein Jersey

Variance (kg2)   
 Additive 1,981,596 1,122,446
 Dominance 545,960 247,035
 Residual 10,731,541 5,370,733
Heritability (%)   
 Additive 14.9 16.7
 Dominance 4.1 3.7
SNP dominance deviation (kg)   
 Range −18.17 to 15.25 −7.5 to 8.6
 Mean (SD) 0.44 (3.38) 0.20 (1.67)

Table 5. Expected progeny value (EPV) and mean genomic inbreeding of progeny from mating of marketed bulls selected for genomic PTA 
milk or randomly with the youngest genotyped cows1 of the same breed in the same herd by mating method, dominance effect inclusion, and 
mate inbreeding source for Holsteins and Jerseys 

Selected bulls Mating method

Dominance 
effect 
included

Mate 
inbreeding 
source

EPV2 (kg)
Progeny 

inbreeding (%)

Holstein Jersey Holstein Jersey

Top 50 for genomic PTA milk Linear programming Yes Genomic 964 732  5.38 4.34
Pedigree 957 719  5.72 4.96

No Genomic 878 680  4.62 3.63
Pedigree 763 604  6.11 5.11

Sequential least-related3 Yes Genomic 889 662  5.85 4.98
Pedigree 881 649  6.11 5.48

No Genomic 793 612  5.60 4.83
Pedigree 714 578  6.66 5.62

Random —  618 537  7.92 6.46
Random 50 Linear programming Yes Genomic 319 252  5.52 4.10

Pedigree 313 237  5.83 4.84
No Genomic 214 198  4.62 3.39

Pedigree 134 122  5.92 4.92
Sequential least-related3 Yes Genomic 220 155  6.08 5.08

Pedigree 208 142  6.34 5.44
No Genomic 112 120  6.10 5.06

Pedigree 65 92  6.74 5.61
Random — — 0 0  7.57 7.51

1Born after October 1, 2010.
2Relative to randomly selected bulls that were randomly mated.
3Pryce et al. (2012).
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based on pedigree relationships restricted inbreeding 
less at sites with QTL that had large effects, whereas 
optimal contribution selection based on genomic rela-
tionships resulted in a more evenly distributed increase 
in identity by descent across the genome. Therefore, 
using genomic instead of pedigree relationships appears 
to be better at constraining genomic inbreeding under 
genomic selection, causing fewer stretches of homozy-
gosity and leaving more diversity across the genome 
and fewer footprints of selection. Changes in homozy-
gosity for causative QTL may be smaller than those 
genotyped SNP due to incomplete linkage.

Estimation of nonadditive genetic effects in animal 
breeding is important. The inclusion of dominance ef-
fects could increase the accuracy of genomic selection, 
and predicted dominance effects could also be used 
to find mating pairs with good combining abilities by 
recovering inbreeding depression and utilizing possible 
overdominance (Wellmann and Bennewitz, 2012). How-
ever, the estimation of dominance effects requires the 
availability of direct phenotypes (i.e., genotypes and 
phenotypes for the same individuals) or single-step 
evaluation models and calculation of dominance prob-
abilities from sire and maternal grandsire, as in Su et 
al (2012a). For dairy cattle, the number of bulls geno-
typed for dense genome-wide marker panels has been 
steadily increasing; however, availability of genotypes 
from cows has been limited in most countries. The US 
databases included many cows with genotypes and phe-
notypes (Figure 1) to estimate dominance effects, but 
the estimates of dominance variances were low and only 
4.1 and 3.7% of total variance for Holstein and Jersey 
milk yield, respectively.

Of all the strategies focused on profiting from in-
cluding dominance effects, mate allocation could be 
the easiest option. Optimal mate allocation relies on 
the idea that although selection should be carried out 
on estimated additive breeding values, animals used 
for commercial production should be the product of 
planned mating, which maximizes the overall (additive 
plus dominance effects) genetic merit of progeny. Mate 
allocation profits from dominance when the commer-
cial population is created, but only additive effects are 
transmitted to the next generation. Although applica-
tion of mate allocation has usually required 2 separate 
lines as in classical crossbreeding programs or recipro-
cal recurrent selection, it can be carried out within a 
single population.

This study indicated that mating programs that 
include dominance effects can increase EPV (86 kg 
for Holsteins and 52 kg for Jerseys when selection and 
mating use genomic PTA for milk, linear programming, 
and genomic relationships) compared with mating pro-
grams that only include additive genetic effects. Toro 

and Varona (2010) quantified the efficiency of mating 
allocation under a whole-genome evaluation scenario 
in terms of genetic response to selection in first and 
subsequent generations. They found that the advantage 
of genomic selection with dominance considered com-
pared with dominance excluded ranged from 9 to 14% 
of expected response; in addition, using mate allocation 
provided an additional response that ranged from 6 to 
22%. Mate allocation can improve the expected genetic 
response over random mating in the first generation, 
but gains do not accumulate across generations (Toro 
and Varona, 2010). Furthermore, the benefits of ge-
nomic selection are reduced each generation unless new 
phenotypic data are collected and genomic predictions 
updated. However, progeny inbreeding did not decrease 
by including a dominance effect. A possible reason may 
be that selection for dominance effects diluted the at-
tempt to minimize genomic inbreeding. When domi-
nance is included, EPV equals genomic PTA plus domi-
nance effect minus inbreeding loss; general inbreeding 
loss may receive less attention in mate assignment as 
individual dominance effects receive more attention.

Linear programming was always better than the 
sequential selection of least-related mates (Pryce et 
al., 2012) and random mating for improving EPV and 
decreasing progeny inbreeding in this study. For the 
sequential method, each female was mated to the bull 
with the highest trait genetic merit if that bull had 
not exceeded a specified limit for number of matings. 
Different ordering of females would result in different 
mating pairs. Linear programming maximized the lin-
ear objective function, gave a globally optimized solu-
tion, and was not affected by mating order. In this 
study, the objective function was maximum expected 
lifetime profit (i.e., LNM minus inbreeding depression), 
not maximum LNM or minimum inbreeding only. Wei-
gel and Lin (2000) compared the results of maximum 
expected lifetime profit and maximized net merit with 
several possible thresholds for controlling inbreeding; 
they found that when the objective function was maxi-
mum expected lifetime profit, mean Holstein inbreeding 
level was reduced by 1.8 percentage points relative to 
methods that ignored inbreeding. Holstein inbreeding 
also was 0.9, 1.2, and 1.4 percentage points less than 
when net merit was maximized with inbreeding thresh-
olds of 5, 6, and 7%, respectively. Estimated lifetime 
profit increased an economic benefit per mating of 
$16.66 relative to use of a 5% inbreeding threshold and 
$37.37 relative to maximization of LNM, regardless of 
inbreeding.

In any mate assignment system, some attention to 
nonlinear economic values of traits (corrective mating) 
or positive assortative mating to increase variance of net 
merit could be better than simply minimizing inbreed-



Journal of Dairy Science Vol. 96 No. 12, 2013

GENOMIC-BASED MATING PROGRAMS 8023

ing (Allaire, 1993). The economic value of net merit is 
nonlinear, with much higher prices for elite animals, 
but the current research did not include nonlinear eco-
nomics or positive assortative mating to increase prob-
ability of obtaining elite progeny. Commercial mating 
programs typically need 1 or 2 alternative mate choices 
in addition to the optimal choice. A convenient method 
for obtaining alternative mates is to set the optimal 
solutions to much less favorable values and rerun the 
linear programming.

CONCLUSIONS

An effective method of transferring elements of G 
from a central database to customers was developed 
to allow implementation of genomic mating programs. 
Mating programs that include genomic relationships 
were more effective than those using pedigree relation-
ships, and the expected decrease in inbreeding was 
worth >$3 million annually for US Holsteins. Extra 
benefit was gained when dominance effects were in-
cluded in the mating program. Combining linear pro-
gramming and genomic relationships was always better 
(i.e., largest EPV and lowest progeny inbreeding) than 
other methods regardless of the mates selected or the 
inclusion of a dominance effect. The best combination 
was mating to animals selected for predicted genomic 
merit and using linear programming, predicted genomic 
merit of mates adjusted for expected future inbreeding, 
genomic relationships, and inclusion of a dominance ef-
fect if available.
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