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ABSTRACT

The objectives of this paper were to briefly review 
progress in the genetic evaluation of novel traits in 
Canada and the United States, assess methods to pre-
dict selection accuracy based on cow reference popu-
lations, and illustrate how the use of indicator traits 
could increase genomic selection accuracy. Traits re-
viewed are grouped into the following categories: udder 
health, hoof health, other health traits, feed efficiency 
and methane emissions, and other novel traits. The 
status of activities expected to lead to national genetic 
evaluations is indicated for each group of traits. For 
traits that are more difficult to measure or expensive 
to collect, such as individual feed intake or immune 
response, the development of a cow reference popula-
tion is the most effective approach. Several determin-
istic methods can be used to predict the reliability of 
genomic evaluations based on cow reference population 
size, trait heritability, and other population parameters. 
To provide an empirical validation of those methods, 
predicted accuracies were compared with observed 
accuracies for several cow reference populations and 
traits. Reference populations of 2,000 to 20,000 cows 
were created through random sampling of genotyped 
Holstein cows in Canada and the United States. The 
effects of single nucleotide polymorphisms (SNP) were 
estimated from those cow records, after excluding the 
dams of validation bulls. Bulls that were first prog-

eny tested in 2013 and 2014 were then used to carry 
out a validation and estimate the observed accuracy 
of genomic selection based on those SNP effects. Over 
the various cow population sizes and traits considered 
in the study, even the best prediction methods were 
found, on average, to either under-evaluate observed 
accuracy by 0.20 or over-evaluate it by 0.22, depending 
on the approach used to estimate the number of inde-
pendently segregating chromosome segments. In some 
instances, differences between observed and predicted 
accuracies were as large as 0.47. Indicator traits can be 
very useful for the selection of novel traits. To illustrate 
this, protein yield, body weight, and mid-infrared data 
were used as indicator traits for feed efficiency. Using 
those traits in conjunction with 5,000 cow records for 
dry matter intake increased the reliability of genomic 
predictions for young animals from 0.20 to 0.50.
Key words: genetic evaluation, novel trait, prediction 
accuracy, genomics, selection

INTRODUCTION

For many years, dairy cattle selection has focused 
primarily on milk production and cow conformation; 
however, many functional traits have negative correla-
tions with production, which has led to reductions in 
health and fitness. Several traits were introduced in 
North American selection objectives over the last 10 
to 20 yr to address this issue, notably SCS, herd life or 
productive life (longevity), and daughter fertility traits. 
In addition, several traits affect product quality, cost 
efficiency, and the environmental impact of dairying. 
These traits are gaining in importance in the industry, 
and genomics provides new opportunities for their se-
lection. The objectives of this paper were to carry out a 
brief review of the status of research and genetic evalu-
ation for those novel traits, to assess their expected 
selection accuracy in industry selection schemes, and to 
illustrate how the use of indicator traits could increase 
that accuracy.
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BRIEF REVIEW OF NOVEL TRAITS  
IN NORTH AMERICA

A comprehensive review of novel traits in dairy cattle 
can be found in Egger-Danner et al. (2015a). That re-
view provides useful information on worldwide research 
for those traits and on phenotyping strategies that can 
be used for their selection. An existing trait in one 
country may be a novel trait in another. Scandinavian 
countries, in particular, have accumulated data and 
produced genetic evaluations for many health traits 
that are novel in other countries. In the current study, 
the purpose was to provide a brief description of the 
status of selection for novel traits in North America, 
including activities expected to lead to national genetic 
evaluations for those traits within the next 5 yr. Table 
1 summarizes current status separately for Canada and 
the United States, including for each trait of (a) no 
or very little research, (b) actively researched, (c) pre-
liminary evaluations produced, or (d) national evalu-
ations officially implemented. Traits were categorized 
as udder health, hoof health, other health traits, feed 
efficiency and methane emissions, or other novel traits. 
For actively researched traits, only research projects 
undertaken with the goal of providing national evalua-
tions over the next 5 yr were described.

Udder Health

Several studies have shown that incorporating mas-
titis incidence data into breeding value estimation 
can improve genetic progress for mastitis resistance 
compared with the use of SCS alone (Heringstad et 
al., 2007). In Canada, the development of a national 
health-recording program began in 2007 as collabora-
tion between the Canadian Dairy Network (CDN; 
Guelph, ON, Canada) and Canadian DHI organiza-
tions and has led to the collection of large amounts 
of data on mastitis incidence. Those incidence data, 
which are recorded by producers or veterinarians, are 
analyzed in a multitrait model with data on SCS and 
other indicator traits (namely, mean SCS in early lac-
tation, standard deviation of SCS, excessive test-day 
SCC, fore udder attachment, udder depth, and BCS) to 
produce traditional as well as genomic evaluations for 
mastitis resistance (Koeck et al., 2012a,c; Jamrozik et 
al., 2013; Miglior et al., 2014). Genomic breeding values 
for mastitis resistance have been published officially in 
Canada since August 2014 and have become part of na-
tional selection indices (Pro$, a new profit-based index 
expressed in dollar terms, and LPI, the current lifetime 
performance index; Beavers and Van Doormaal, 2015) 
since August 2015.

Table 1. Novel traits with ongoing research or official evaluations in the United States and Canada (AR = actively researched; PE = preliminary 
evaluations produced; OE = official evaluations nationally implemented)

Trait  
United  
States  Canada

Udder health     
 Mastitis incidence (recorded by producer or veterinarian)  AR  OE
 Alternative definitions of SCS  —  OE
 New predictors of mastitis incidence [conductivity, mid-infrared (MIR)]  —  AR
 Hoof health (hoof trimming, locomotion, lameness)  AR  PE
Other health traits     
 Reproductive disorders [incidence of retained placenta, metritis, cystic ovaries, predictors (e.g., activity monitor 
  data, hormones)]

 AR  AR

 Metabolic diseases [incidence of ketosis, displaced abomasum, predictors (e.g., BHB, fat:protein ratio)]  AR  PE
 Resistance to Johne’s disease (Mycobacterium avium ssp. paratuberculosis)  AR  AR
 Immune response (antibody, cell-mediated)  —  E1

Feed efficiency and methane emissions     
 Individual feed intake [e.g., DMI, residual feed intake, energy balance, predictors (production, direct or indirect 
  cow weight, MIR)]

 AR  AR

 Emission of methane (calorimeter, other methods) and predictors (e.g., MIR)  AR  AR
Other novel traits     
 Workability     
  Milking speed (measured or subjective)  —  OE
  Milking temperament (subjective)  —  OE
 Profitability     
  Number of embryos produced (for embryo transfer)  —  AR
  Profit per cow to 6 yr of age  —  OE2

  Milk composition (fatty acids, lactoferrin) and predictors (e.g., MIR)  —  AR
1Evaluations within one AI organization.
2Used for derivation of a national selection index.
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In the United States, research results on the genetics 
of health traits were reported as early as 2004 (Zwald 
et al., 2004a,b). In a recent study (Parker Gaddis et al., 
2014), genetic analyses were performed using approxi-
mately 300,000 records of health events contributed by 
producers to a US dairy record processing center from 
1996 through 2012. Those records were categorized 
into broad areas, including reproductive problems, 
metabolic diseases, and lameness, as well as mastitis. 
The authors concluded that genetic selection for health 
traits using producer-recorded data is feasible in the 
United States and that the inclusion of genomic data 
would substantially improve selection accuracy. Other 
indicator traits (such as the electrical conductivity of 
milk) have been proposed to help predict mastitis in-
cidence (Fernando et al., 1985; Goodling et al., 2000). 
The addition of this information may increase the ac-
curacy of breeding values, but research is still required 
to confirm this. National genetic and genomic evalua-
tions for udder and other health traits are not being 
planned currently in the United States, but discussions 
are ongoing regarding the development of a national 
health-recording program that could facilitate this goal 
in the future (J. M. Mattison, National Dairy Herd 
Information Association, Verona, WI; personal com-
munication).

Hoof Health

Improving hoof health (or claw health, as it is usually 
called in the United States) is a major goal for the 
dairy cattle industry in North America (as in many 
other countries), given the prevalence of lameness and 
hoof health problems in dairy herds (Cramer et al., 
2008). In the United States and Canada, genetic evalu-
ations for conformation traits of feet and legs have been 
available for several decades. However, indirect genetic 
selection for hoof health through conformation traits 
has not been very effective. In particular, correlations 
between infectious claw lesions and feet and leg traits 
(e.g., foot angle, heel depth, bone quality, rear leg view, 
and locomotion) are low (van der Waaij et al., 2005; 
Chapinal et al., 2013). To select effectively for hoof 
health, single claw lesions reported by hoof trimmers 
must be considered. Consistency of diagnosis and data 
recording is important, which was the motivation be-
hind the development of a claw health atlas by the In-
ternational Committee for Animal Recording (http://
www.icar.org/Documents/ICAR_Claw_Health_Atlas.
pdf; Egger-Danner et al., 2015b). Electronic data 
capture using handheld devices has made recording in-
formation on hoof disorders easier. For example, Hoof 
Supervisor (Dresser, WI) helps in standardizing the 

definition of symptoms, allows electronic data capture, 
and produces on-farm reports.

In Canada, several regional projects have been car-
ried out between 2010 and 2013. The accumulated hoof 
health data have been used to calculate heritabilities 
and genetic correlations for various hoof health traits 
(Chapinal et al., 2013; Malchiodi et al., 2015). A na-
tional project is now underway to develop an interface 
for data exchange between hoof trimmers and Cana-
dian DHI and between Canadian DHI and CDN and to 
produce genetic and genomic evaluations for key hoof 
health traits within the next 3 yr. At this point, traits 
such as the incidence of digital dermatitis and of sole 
ulcers appear to be the most promising. Trait defini-
tions for hoof infections and horn lesions in Canada are 
now fully aligned with the standards recently published 
by the International Committee for Animal Recording 
(Egger-Danner et al., 2015b). In the United States, 
several promising studies have been completed using 
hoof-trimmer data (Oberbauer et al., 2013; Dhakal et 
al., 2015b), but currently no plans have been made to 
proceed with national evaluations for hoof health traits.

Two other related traits that have been recorded in 
Canada for several years are lameness and locomotion. 
Lameness is recorded as part of the national health-
recording program, and locomotion is recorded as a 
research trait by Holstein Canada (Brantford, ON, 
Canada). Because a database now exists for those 
traits, they may become part of the national genetic 
evaluation for hoof health, where they would be used in 
association with hoof-trimmer data.

Other Health Traits

Reproductive Disorders.  Reproductive disorders 
such as retained placenta, metritis, and cystic ovaries 
are affected mostly by herd management and environ-
mental factors and have low heritabilities (Koeck et 
al., 2012b, 2015a; Cole et al., 2013; Berry et al., 2014b; 
Parker Gaddis et al., 2014; Dhakal et al., 2015a). How-
ever, significant differences in daughter incidence do 
exist among sires. In Canada, these traits are recorded 
as part of the national health-recording program. They 
are also recorded by some dairy record processing cen-
ters in the United States. Given their low heritability 
and the lack of suitable indicator traits, the develop-
ment of genetic or genomic evaluations for these traits 
has not been given a high priority, although it remains 
a long-term possibility.

Superovulation. Superovulation and embryo trans-
fer have been used in North America for at least 20 yr 
to increase the reproduction rate of females with high 
genetic potential. They have become even more instru-
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mental in the selection process over the last few years 
in combination with in vitro fertilization by permitting 
the production of relatively large numbers of progeny 
from top young females, which can then be screened 
based on their genomic evaluations. In Canada, re-
search has begun on the analysis of the number of total 
and viable embryos produced per flush for >135,000 
flushes from 54,000 cows. Preliminary research indi-
cates heritabilities of 0.14 to 0.17 for these traits as well 
as significant genetic differences among sires (Jaton et 
al., 2015). Genomic analysis shows that a few QTL may 
have a large influence (Jaton et al., 2015). Research is 
continuing, but no plan has been formulated yet for 
its application. In the United States, a SNP associated 
with superovulation response was found to be associ-
ated with heifer conception rate and productive life 
(Cochran et al., 2013).

Metabolic Diseases. Metabolic diseases include 
ketosis, milk fever, and displaced abomasums, which 
are of significant economic concern to the dairy cattle 
industry. Ketosis, in particular, has a relatively high 
frequency, with a mean of 5.1% for first parities and 
11.6% for later parities in Canada (Koeck et al., 2015b) 
and 10% in the United States (Zwald et al., 2004a). 
For some years now, testing of milk BHB has made it 
possible to detect subclinical levels of ketosis before the 
disease occurs clinically (Geishauser et al., 2000). At 
the same time, BHB tests provide a new way of select-
ing against both ketosis and milk fever. In Canada, 
BHB tests are carried out primarily by milk-recording 
organizations (CanWestDHI, Guelph, ON, Canada; Va-
lacta, Sainte-Anne-de-Bellevue, QC, Canada). There-
fore, records can be centralized and associated with ke-
tosis incidence data from the national health-recording 
program. Recent studies (Koeck et al., 2015b; Jamrozik 
et al., 2016) showed that genetic and genomic selection 
for resistance to ketosis is quite possible because of the 
strong genetic correlation between ketosis incidence 
and BHB (0.75) and the heritability of 0.10 to 0.13 for 
BHB, which is relatively high for health traits. A study 
of SNP associated with subclinical ketosis in US Jerseys 
(Fugate et al., 2014) reported that genotypes could be 
useful for predicting predisposition for ketosis. Another 
promising avenue is the use of mid-infrared (MIR) data 
to predict ketosis because of its association with energy 
balance (Gengler et al., 2015). In the United States, 
data from on-farm herd management systems may be 
sufficient for routine calculation of genetic and genomic 
evaluations for most common health disorders of US 
Holsteins (Clay et al., 2013; Cole et al., 2013). Cana-
dian genetic and genomic evaluations for resistance to 
metabolic disease traits are being planned for 2016.

Johne’s Disease. Using genomics to select for re-
sistance to Mycobacterium avium ssp. paratuberculosis 

(MAP), the bacterium known to cause Johne’s dis-
ease, has been the subject of several research projects 
in North America (Zare et al., 2014a,b). In Canada, 
these projects have focused primarily on attempting 
to understand mechanisms underlying the disease. 
Preliminary research has also begun on the analysis of 
milk test records for MAP collected by CanWest DHI. 
However, the relatively low frequency of MAP recorded 
in the Canadian DHI database has been a challenge, 
and implementation of any genetic-based program to 
increase resistance to MAP may take several years. 
Although some research has taken place in the United 
States based on MAP data collected through various 
programs (Byrem et al., 2009; Attalla et al., 2010), 
US national evaluations for resistance to MAP are not 
planned at this time (J. B. Cole, Animal Genomics and 
Improvement Laboratory, Agricultural Research Ser-
vice, USDA, Beltsville, MD; personal communication).

Immune Response. Selection for general resistance 
to disease represents an interesting and promising av-
enue to reduce disease levels in dairy herds. Sonstegard 
and Gasbarre (2001) discussed the possibility of using 
genomic tools to improve parasite resistance. Research 
carried out over the last 10 yr in both Canadian and 
US herds indicates that animals with higher immune 
response have lower levels of disease (e.g., mastitis 
and metritis), produce higher quality colostrum, and 
respond better to vaccines (Thompson-Crispi et al., 
2012, 2014a,b). In Canada, proprietary technology 
developed by the University of Guelph (Guelph, ON, 
Canada) for the selection of high immune response is 
now used on a routine basis by one AI organization 
(Mallard et al., 2014). A reference population of 2,000 
bulls and 5,000 cows is being developed with the objec-
tive of introducing genomic selection for 2 key traits: 
antibody-mediated immune response and cell-mediated 
immune response.

Feed Efficiency and Methane Emissions

Feed Efficiency. Feed accounts for as much as 50% 
of costs on dairy farms in North America, and feed 
costs have been increasing over the last few years. As a 
result, there is considerable interest in developing ways 
to select for cow feed efficiency, which can generally be 
defined as units of output per unit of input at the farm 
level or for an individual animal. The lack of availabil-
ity of individual feed intake data has been the great-
est obstacle to selection for feed efficiency (Berry and 
Crowley, 2013). The 2 options that are likely to provide 
sufficient selection accuracy despite the limited amount 
of phenotypes are the use of indicator traits (Fogh et 
al., 2013) and genomic prediction (Pryce and Berry, 
2014). Several research centers in North America [CDN, 
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the University of Alberta (Edmonton, AB, Canada), 
Iowa State University (Ames, IA), and the University 
of Wisconsin (Madison, WI)] have participated in the 
global Dry Matter Initiative, which includes 10 research 
herds from 9 countries (Australia, Canada, Denmark, 
Germany, Ireland, the Netherlands, New Zealand, 
United Kingdom, and United States). The Initiative’s 
goal is to combine feed intake records from different 
sources to create a large cow reference population for 
genomic selection of DMI (de Haas et al., 2015).

In Canada, individual feed intake data have been 
collected for many years at the University of Alberta 
on a limited scale, but a new research facility has just 
opened at the University of Guelph. A project to in-
crease feed efficiency and reduce methane emissions has 
been funded through Genome Canada (Ottawa, ON, 
Canada) with several Canadian participants and part-
ners in the United States, United Kingdom, Australia, 
and Switzerland; the 4-yr project began in late 2015 
(Genome Alberta, 2015). A new feature of this project 
is the collection of individual feed intake data using 
specialized equipment in a few sponsored commercial 
farms so that data collection costs can be reduced com-
pared with those incurred in a typical research herd. 
Phenotypes such as residual feed intake will be exam-
ined using genotyped populations so that development 
of genomic predictions can be investigated for this trait.

In the United States, several initiatives on feed ef-
ficiency have already taken place. A large cooperative 
project involving Iowa State University, Michigan State 
University (East Lansing, MI), North Carolina Agricul-
tural and Technical State University (Greensboro, NC), 
Virginia Polytechnic Institute and State University 
(Blacksburg, VA), the University of Florida (Gaines-
ville, FL), and Wageningen University (Wageningen, 
the Netherlands) began in 2011. The project will result 
in the collection and analysis of feed intake records on 
up to 8,000 cows by the time it is completed in 2016. 
The research to date has focused on the methodology 
and statistical issues arising from combining data from 
multiple sources (Spurlock et al., 2014; Tempelman et 
al., 2015). Genomic evaluations for feed efficiency based 
on data collected through these projects (and possibly 
data from international cooperators) are, therefore, 
likely to become a reality over the next few years. In 
the meantime, Holstein Association USA (Brattleboro, 
VT) has introduced a feed efficiency component in its 
selection index, which is a function of production and 
predicted cow weight designed to approximate mainte-
nance requirements. Currently, this measure does not 
account for variation between individuals in their ef-
ficiency of converting an equivalent amount of feed into 
product.

Methane Emissions. Part of the environmental 
impact of dairying is the emission of methane gas by 
cows, which contributes to climate change. Increased 
production per cow has allowed the industry to sub-
stantially reduce methane emissions per kilogram of 
milk produced. The North American dairy cattle in-
dustry, however, has been looking for additional ways 
to reduce methane emissions. Various methods are 
available for measuring methane emissions, from calo-
rimetry chamber (the gold standard) to devices that 
can be secured to the animal (METHAGENE, 2015). 
All these methods are expensive and do not allow for 
data collection of methane emissions on a very large 
scale. A more promising avenue for selection for re-
duced methane emission is through indirect selection. 
Recent research (Dehareng et al., 2012; McParland et 
al., 2014) has shown that MIR spectral data could serve 
as a useful predictor of feed efficiency. Furthermore, 
the same research indicates that a genetic increase in 
feed efficiency is associated with a decrease in methane 
emission. Several research projects are underway in 
North America, including the feed efficiency projects 
cited earlier, to investigate this issue further.

Other Novel Traits

MIR Spectral Data. Most livestock industries have 
been selecting for product composition to enhance the 
value of their product to the consumer. In dairy cattle 
breeding, the main criteria for selection have been pro-
tein and fat composition of milk. New technology is now 
available, however, to probe milk composition further. 
In particular, some of the laboratory equipment used 
by DHI organizations for the analysis of milk, which is 
based on the MIR spectrum, offers new opportunities 
for predicting milk content of various fatty acids and 
of other components such as lactoferrin (Soyeurt et al., 
2010, 2011; De Marchi et al., 2014). In Canada, about 
2.4 million MIR records from 600,000 cows have been 
collected by Canadian DHI organizations since 2013, 
and a project is now underway to develop a central-
ized database for these records; develop predictions for 
milk composition, feed efficiency and methane emis-
sions; and produce genetic and genomic evaluations for 
some of these MIR predictions. The MIR project began 
in 2014 and will be completed in 2018. In the United 
States, discussions are underway among DHI organiza-
tions to determine how much MIR data are available 
and whether they could be used for the same purposes 
(J. M. Mattison, National Dairy Herd Information As-
sociation, Verona, WI; personal communication).

Workability. Other novel traits could be related to 
cow workability; that is, traits that facilitate working 
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with cows on the farm. In Canada, official genetic evalu-
ations for milking speed and milking temperament have 
been available for more than 20 yr and are no longer 
considered to be novel there. The main purpose of such 
evaluations is to identify sires that produce daughters 
with undesirable milking speed or temperament. Atten-
tion to these traits has increased recently because of 
their effect on robotic milking, which is becoming more 
common in the industry. The data consist of subjec-
tive ratings provided by dairy producers. Before official 
evaluations began for milking speed, subjective rank-
ings were compared with milk flow measurements and 
found to be in good agreement. Genomic evaluations 
for both traits have been published in Canada since 
2009. There is no immediate plan to introduce evalua-
tions for these traits in the United States.

Profitability. Traditionally, total indices of genetic 
merit are designed to predict total profit and combine 
breeding values weighted by their respective economic 
values. However, a novel approach is to calculate the 
profitability of the cow itself and use this as a pheno-
type. In Canada, an evaluation of profit per cow to 6 
yr of age became available in August 2015. Canadian 
DHI organizations calculate and report to their mem-
bers the accumulated profit per cow until the cow is 
culled; variables such as milk and component prices, 
maintenance and marginal feed costs, and heifer rear-
ing costs are taken into account. Those data were used 
to derive the new selection index Pro$, which weights 
all traits evaluated to date in a way that maximizes 
for the function of profit per cow to 6 yr of age (Bea-
vers and Van Doormaal, 2015). This approach has 2 
advantages. First, the new trait relates directly to the 
economic data that producers receive from DHI, which 
is expected to facilitate acceptance by producers. Sec-
ond, the new index inherently accounts for correlations 
between all component traits, something that many 
selection indices used today are not doing and which 
can result in less than an economic optimum.

SELECTION OF NOVEL TRAITS

Most selection today in North America is carried 
out on young animals (young bulls or heifers) using 
genomic evaluations. In Canada, only bulls are used 
in the reference population, whereas both bulls and 
cows are used in the United States. Novel traits tend 
to come in 2 categories, leading to 2 different selection 
approaches. The first category includes traits that are 
relatively inexpensive to collect through DHI or other 
recording programs and for which a large database 
is already available in some cases. Examples include 
milking speed and temperament in Canada, disease 

incidence or claw health (hoof trimmer data), milk 
MIR data, and milk tests associated with MAP. For 
such traits, the main challenges are ensuring national 
standardization of data collection and the development 
or expansion of a national database. Once standard-
ized records are available, genetic parameters can be 
estimated and traditional evaluations carried out using 
either a sire or an animal model. Because data collec-
tion usually occurs on a large scale, sires tend to have 
large numbers of daughters with records. In addition, 
these sires have already been genotyped by the industry 
as a prerequisite for genomic selection of current traits. 
Therefore, the easiest and cheapest route for genetic 
improvement is to develop genomic evaluations based 
on deregressed traditional sire evaluations or to use a 
one-step genetic evaluation model that uses phenotypes 
and genotypes directly for the same purpose. For such 
traits, the same genomic evaluation pipeline that al-
ready exists for current traits can be used. The difficult 
part is organizing the standardization and centralized 
storage of the data.

The second category of traits includes those that are 
expensive or difficult to record. Examples are feed ef-
ficiency, methane emission, and immune response. For 
such traits, a new database usually needs to be con-
structed, often at considerable expense; for example, 
an individual feed efficiency record may cost from $250 
to $1,000 to collect. Given this expense, genotyping 
all animals with phenotypes is more efficient than us-
ing, for example, the genotypes of their sires, even if 
those are already available. The use of a cow reference 
population is, therefore, the most cost-effective way 
to generate genomic evaluations for such traits (Van 
Grevenhof et al., 2012; Calus et al., 2013).

The formula derived by Daetwyler et al. (2008) 
provides a simple and convenient means to compare 
the prediction accuracy of different scenarios based on 
either a sire or cow reference population. With this 
formula, the reliability (REL) of genomic predictions 
is calculated as

 REL = Nh2/(Nh2 + Me), 

where N is the number of individuals in the reference 
population that have both a genotype and a breeding 
value, h2 is the REL of each breeding value (equal 
to the heritability of the trait if an animal is evalu-
ated based only on its own phenotype), and Me is the 
number of independently segregating chromosome seg-
ments. The value Me can be calculated as Me = 2NeL, 
where Ne is the effective population size and L is the 
length of the genome in Morgans (assumed to be 30 
for cattle; Hayes et al., 2009b). Daetwyler et al. (2008) 
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also introduced a correction to this formula, which is 
to add REL4Me/2N to the value of REL above. All 
formula values presented in this paper include this cor-
rection. In Stachowicz et al. (2011), the effective size of 
the Canadian Holstein population was estimated to be 
115. More recent work by Larmer (2012) estimated the 
effective size of the Holstein population to be 153 at 20 
generations ago, 109 at 9 generations ago, and 99 at 6 
generations ago. Extrapolation of this trend leads to 
a mean effective population size of 85 on average over 
the last 2 to 3 generations. An Ne of 100 was assumed, 
which is intermediate to the estimates of Stachowicz et 
al. (2011) and Larmer (2012).

Based on the above formulas, the reliabilities of ge-
nomic predictions were calculated for various herita-
bilities and numbers of sires (and daughters per sire) 
or cows in the reference population (Table 2). In ad-
dition, the total cost of each scheme is shown for 2 
phenotyping costs: $1 or $100 per cow phenotype. This 
cost corresponds to the accumulation of phenotypes 
and genotypes (potentially over several years) needed 
to achieve the stated level of accuracy. Sires are as-
sumed to be already genotyped (i.e., no additional cost 
is associated with their genotyping), and the cost of 
genotyping cows is assumed to be $80 per cow. When 
the cost of phenotyping was ≤$1, using a sire reference 
population (or potentially both sires and cows) was ad-
vantageous. This is especially true for low-heritability 
traits, for which the use of progeny-based evaluations 
leads to moderately accurate genomic predictions at 
a reasonable cost (<$1 million). However, as soon as 
the cost of phenotyping increases, the cost of a sire 
scheme becomes too high, and using a cow reference 
population is necessary. The worst situation occurs for 
any trait for which the cost of phenotyping is high and 
the heritability is low. In such a case, the cow reference 
scheme requires a considerable number of animals for 
adequate prediction accuracy, and the sire reference 
scheme becomes prohibitively expensive.

The Daetwyler formula relies on relatively simple 
theoretical assumptions such as the number of inde-
pendently segregating chromosome segments. Some 
comparisons between formula predictions and observed 
estimates of accuracy from genomic validation stud-
ies have been made in the past (Hayes et al., 2009a; 
Wientjes et al., 2013; Brard and Ricard, 2015) but 
mostly for sire reference populations. Very few com-
parisons have been made for cow reference populations. 
The study of Brard and Ricard (2015) used data from 
13 articles, but 7 were based on simulated data and 
all others were based on sire reference populations. In 
Wientjes et al. (2013), comparisons between methods 
were based on simulated genotypes, with the excep-
tion of one empirical comparison based on a reference 
population of only 529 cows for only one trait.

Several countries in North America and elsewhere 
have been developing or considering the development 
of cow reference populations for various traits, with 
their high inherent cost. The empirical validation of 
prediction formulas would therefore be useful for as-
sessing what population size is required to achieve a 
minimum accuracy level. In the next section, we used 
the Canadian and US genotyped Holstein cow popu-
lations to carry out such a validation. This objective 
does not require the use of novel traits because the 
Daetwyler formula applies to any trait, not just novel 
traits. In fact, validation of the formula is more effec-
tive using existing traits for which sufficient genotypes 
and phenotypes have already been accumulated. Then, 
heritability estimates are more reliable and observed 
reliabilities of direct genomic values can be readily 
computed. Traits used in the validation were chosen to 
represent a wide range of heritabilities to test the effect 
of heritability on accuracy of prediction.

The amount by which indicator traits can increase 
prediction accuracy is another question associated with 
the development of cow reference populations. To shed 
some light on this question, an example based on DMI 

Table 2. Reliability and comparative costs of various reference populations1

Reference 
population  

Daughters/ 
sire (no.)

Total records 
(no.)

Reliability based on heritability

 

Cost (million $) based 
on phenotype cost

0.05 0.20 0.50 $1/record $100/record

2,000 bulls 50 1,000,000 0.11 0.20 0.23  0.10 10.00
 100 200,000 0.16 0.22 0.24  0.20 20.00
10,000 bulls 50 500,000 0.40 0.57 0.63  0.50 50.00
 100 1,000,000 0.48 0.62 0.65  1.00 100.00
1,000 cows — 1,000 0.02 0.06 0.14  0.16 0.36
2,000 cows — 2,000 0.04 0.14 0.30  0.41 0.90
5,000 cows — 5,000 0.08 0.25 0.47  0.81 1.80
10,000 cows — 10,000 0.14 0.40 0.65  1.62 3.60
1Reliability based on formulas of Daetwyler et al. (2008) and Hayes et al. (2009b) with an effective population size of 100; cows are assumed to 
have one novel trait record each; costs assume that bull genotypes are already available, cow phenotypes are a fixed cost, and cow genotypes 
are $80 each.
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was investigated from a theoretical point of view with 
protein yield, predicted BW, and MIR predictions of 
DMI as indicator traits.

MATERIALS AND METHODS

Comparing Accuracies from Genomic Validation  
and from the Daetwyler Formula

To determine how accurately the Daetwyler formula 
predicts the accuracy of genomic selection based on 
cow reference populations, we compared reliabilities 
calculated with the formula with observed reliabilities 
from successive validation studies. In those studies, 
SNP effects were calculated from the phenotypes and 
genotypes of cows in the reference population. Those 
SNP effects were then used to calculate direct genomic 
values (DGV) for recently progeny-tested young bulls, 
which made up the validation group. All daughters 
from those bulls had first been removed from the cow 
reference population so that the SNP effects and bull 
DGV did not reflect those daughter data. Observed re-
liabilities were then calculated based on the correlation 
between the validation bulls DGV and their daughter 
deviations (DD). A group of validation cows that was 
separate from the reference population could have been 
used instead of validation bulls to calculate observed 
reliabilities. With validation cows, however, observed 
reliability estimates are more readily affected by differ-
ences in the calculation of the theoretical reliabilities 
of cow breeding values, which are much lower than 
for progeny-tested bulls, especially for low-heritability 
traits. As a result, we felt the use of validation bulls 
would provide more robust estimates of observed reli-
abilities.

As of December 2014, 17,000 Holstein cows had geno-
types in the database used for official Canadian evalu-
ations. Genotypes were from various bead chips that 
included from 3,000 to 50,000 SNP. For this study, only 
genotypes from bead chips with 6,000 to 50,000 SNP 
were used. All genotypes were imputed to 50,000 SNP 
using version 2 of FImpute (Sargolzaei et al., 2011). 
Random samples of 2,000, 5,000, and 10,000 cows were 
obtained from that genotyped population after remov-
ing all daughters or dams of validation bulls. Cow EBV 
for traits with various heritability levels (protein yield, 
mammary system, feet and legs, and heel depth) were 
obtained from the CDN database and deregressed so 
that the effect of parent average (PA) was excluded. 
Type traits with lower heritability were used instead 
of health and fitness traits, because cow EBV are not 
routinely calculated for health and fitness traits in 
Canada.

The effects of SNP markers were estimated with 
GBLUP, the same method used for official Canadian 
genetic evaluations (Van Doormaal et al., 2009), using 
each one of the random cow samples as the reference 
population. Those SNP effects were used to compute 
the DGV of 748 bulls progeny tested in 2013 and 2014, 
which made up the validation group. Realized genomic 
reliabilities were calculated from the squared correla-
tions (r2) of the DGV of the validation bulls with their 
daughter deviations after adjusting for error variance 
in the daughter deviations and for prior selection on 
pedigree as suggested by VanRaden et al. (2009):

 REL R REL REL R RELDGV DGV,DD DD PA PA,DD DD= + −( ) ( )⎡
⎣⎢

⎤
⎦⎥

2 2 .

The conversion from correlation to reliability is required 
to make RELDGV comparable with the prediction ac-
curacy calculated from the Daetwyler formula, because 
both are estimates of the square of the correlation 
between prediction and true genetic value. Generally, 
genotyped cows are not a random sample of the popula-
tion, particularly in early years when genomic selection 
was introduced in Canada. To determine if this had any 
effect on observed reliabilities, separate evaluation runs 
were carried out where cows with high genomic reli-
abilities, or cows that had been genotyped with 50,000 
SNP rather than a low density panel, were excluded 
from the reference population. The effect on prediction 
accuracies was found to be negligible, however, so those 
results are not reported.

A similar approach was used to compare predictions 
from random samples of cow phenotypes and genotypes 
in the United States. Because of the larger size of the 
US cow population, however, we investigated reference 
population sizes of 5,000, 10,000, and 20,000 cows. 
Evaluations of reference cows and validation bulls 
were those from the December 2014 official US evalu-
ation. The SNP effects were based on the US genomic 
evaluation model (VanRaden, 2008). As in Canada, the 
daughters and dams of validation bulls were excluded 
from the cow reference population. Prediction accuracy 
was calculated for several traits with various heritabili-
ties (protein percentage, protein yield, fat yield, pro-
ductive life, and daughter pregnancy rate). The number 
of validation bulls for all traits was 1,491.

To assess the effect of formula parameters on differ-
ences between observed and predicted accuracy for sire 
reference populations as well as cow reference popula-
tions, we also compared observed reliabilities from Coo-
per et al. (2014) for the US sire reference population to 
reliabilities calculated from the Daetwyler formula for 
a selected group of US traits. The number of reference 
bulls used was 21,888 for all traits. Effective heritability, 
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used in the Daetwyler formula, was calculated as nh2/[4 
+ (n − 1)h2], where n is the number of daughters per 
sire (Cameron, 1997) and was assumed to be 100.

Given the differences between prediction accuracies 
estimated from validation results and from the Daetwy-
ler formula when Ne was assumed to be 100, predictions 
based on the Daetwyler formula (with Me = 2NeL) were 
also calculated for an Ne of 50. The use of this smaller 
Ne was primarily designed to test the effect of a dif-
ferent Ne on the results. Besides Me = 2NeL (Hayes et 
al., 2009b), we used the other frequently used formula 
for Me: Me = 2NeL/ln(4NeL) (Goddard, 2009). These 
2 expressions of Me were designated as Me1 and Me2, 
respectively.

As in Brard and Ricard (2015), other methods of 
calculating Me were compared with Me1 and Me2: Me = 
4NeL (Stam, 1980) and Me = 2NeL/ln(2NeL) (Goddard 
et al., 2011), as well as other deterministic formulas 
to predict genomic reliabilities (Goddard, 2009; God-
dard et al., 2011). For the cow reference populations 
and traits considered, however, none of those methods 
provided better estimates of observed reliabilities than 
Me1 or Me2; Me = 4NeL resulted in even greater underes-
timation of observed reliabilities than Me1, and all other 
methods resulted in greater overestimation of observed 
reliabilities than Me2. Therefore, results for these other 
methods are not presented.

Assessing the Impact of Indicator Traits

The impact of indicator traits on the prediction ac-
curacy of novel traits was investigated using DMI as 
an example, with protein yield, predicted BW (from 
conformation records), and MIR predictions of DMI 
as indicator traits. As indicated earlier, most of the 
genetic progress in the North American dairy cattle 
population today results from the selection of young 
animals based on their genomic evaluations. Genomic 
breeding values can be obtained not only for the novel 
trait itself but also for indicator traits and then com-
bined using the variance-covariance structure between 
all traits. Alternatively, a multitrait genomic evalua-
tion can be used with all traits evaluated together. The 
first approach was used for this study. Heritabilities 

and genetic correlations between traits (Table 3) were 
based on means of literature estimates (e.g., McPar-
land et al., 2012; Spurlock et al., 2012; Berry et al., 
2014a; Manzanilla Pech et al., 2014; and Veerkamp et 
al., 2014). The source of information available for each 
trait was 5,000 or 10,000 cows with individual feed in-
take data (direct evaluation of DMI), 20,000 sires with 
100 daughters each for protein yield and predicted BW 
(i.e., a sire reference population similar in size to that 
in North America), and either 2,000 or 10,000 sires 
with predictions of DMI based on MIR data (with the 
smaller number of sires corresponding to early accu-
mulation of MIR records and the higher number to 5 
yr of data collection). All bulls were assumed to have 
100 daughters, but effective heritability varies little for 
these traits once the number of daughters exceeds 50. 
Table 4 shows the reliabilities of the DGV for each 
trait and their expected genetic correlations. All reli-
abilities were estimated using the Daetwyler formula 
with Me = 2NeL and Ne = 100, which, as shown in the 
next section, tends to generate conservative estimates 
for cow reference populations. The expected correlation 
between the DGV of 2 different traits for the same ani-
mal was calculated as the genetic correlation between 
the traits times the square root of the product of the 
DGV reliabilities. Correlations between the prediction 
errors of DGV for different traits were assumed to be 
negligible. The Excel software program STSELIND, 
developed by van der Werf (1999), was used to calcu-
late the reliability of DMI for each scenario, based on 
the genomic reliabilities of intervening traits and their 
variance-covariance structure.

RESULTS AND DISCUSSION

Comparing Reliabilities from Genomic Validation 
and from the Daetwyler Formula

Reliabilities from the Daetwyler formula are com-
pared with observed reliabilities in Table 5 for Canada 
and Table 6 for the United States, for cow reference 
populations of various sizes and different traits. The 
results are very similar for both countries. When Ne 
= 100, Daetwyler predictions using Me1 are system-

Table 3. Heritabilities (on diagonal) and genetic correlations (above diagonal) applied in assessing the impact 
of indicator traits on prediction accuracy for DMI

Trait DMI
Protein  
yield

Predicted  
BW

Milk 
mid-infrared data

DMI 0.30 0.60 0.30 0.60
Protein yield  0.30 0.36 0.30
Predicted BW   0.50 0.40
Milk mid-infrared data    0.25
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atically lower than observed reliabilities. The difference 
is especially large when the size of the cow reference 
population is limited (2,000 cows for Canada, or 5,000 
in both countries) or when the heritability of the trait 
is low (heel depth in Canada or daughter pregnancy 
rate in the United States). On the other hand, Daet-
wyler predictions using Me2 (and Ne = 100) are system-
atically higher than observed reliabilities, except when 
the reference cow population size is small and the trait 
heritability is low. In general, the Daetwyler formula 
underpredicts accuracy when based on Me1, by an aver-
age of 0.16 over all cow reference population sizes and 
traits, and overpredicts it when based on Me2, by an 
average of 0.24.

Using a value of Ne = 50 in the formula with Me1 re-
duces the underestimation, as expected. However, even 
with such a low value, the formula continues to under-
predict observed reliabilities in many cases, particularly 
when the heritability of the trait is low. Using a value of 

Ne = 50 in the formula with Me2 considerably increases 
the overprediction of observed reliabilities.

Differences between Daetwyler formula predictions 
and observed reliabilities are presented in Table 7 for 
the US Holstein bull reference population. For this 
population, predictions from the formula with Me1 are 
closer to observed reliabilities than for the cow reference 
populations considered previously. The average differ-
ence between predicted and observed reliabilities for 
the 5 traits considered is −0.06. However, the formula 
tends to slightly underestimate observed reliability for 
high heritability traits and slightly overestimate it for 
low heritability traits. The use of Me1 with Ne = 50 
or the use of Me2 with Ne = 100 both result in severe 
overpredictions of observed reliabilities.

Part of the differences between predicted and ob-
served reliabilities could also be due to the fact that 
observed reliabilities are overestimated or underes-
timated; that is, different from correlations between 

Table 4. Expected reliabilities1 of single-trait direct genomic values (on diagonal) and genetic correlations2 
between single-trait genomic evaluations of young animals for DMI and indicator traits (above diagonal) using 
data from 5,000 cows for DMI, 20,000 sires for protein yield and predicted BW, and 2,000 sires for milk mid-
infrared data3

Trait DMI
Protein 
yield

Predicted 
BW

Milk 
mid-infrared data

DMI 0.20 0.24 0.12 0.13
Protein yield  0.79 0.29 0.13
Predicted BW   0.81 0.17
Milk mid-infrared data    0.23
1Based on the formula of Daetwyler et al. (2008) with an effective population size of 100.
2Calculated as genetic correlation between traits times the square root of the product of the reliabilities for the 
traits’ direct genomic values.
3Sires were assumed to have 100 daughters each.

Table 5. Comparison between predicted reliability (based on the Daetwyler formula using different estimates of Ne and Me) and observed 
reliability for various Holstein cow reference populations in Canada1

Trait  No. of cows
Observed 

REL

Daetwyler REL

Me1

 

Me1

 

Me2

Ne = 100 Ne = 50 Ne = 100

Protein yield 2,000 0.40 0.11 0.20 0.55
(h2 = 0.37) 5,000 0.45 0.24 0.39 0.76
 10,000 0.54 0.39 0.57 0.87
Mammary system 2,000 0.21 0.08 0.14 0.43
(h2 = 0.24) 5,000 0.25 0.17 0.29 0.66
 10,000 0.33 0.29 0.45 0.80
Feet and legs 2,000 0.26 0.05 0.09 0.32
(h2 = 0.15) 5,000 0.27 0.11 0.20 0.55
 10,000 0.32 0.20 0.34 0.71
Heel depth 2,000 0.26 0.03 0.06 0.19
(h2 = 0.076) 5,000 0.25 0.06 0.12 0.37
 10,000 0.32 0.11 0.21 0.55
1REL = reliability; Me1 = 2NeL as per Hayes et al. (2009b); Me2 = 2NeL/Log(4NeL) as per Goddard (2009), where Me is the number of indepen-
dently segregating chromosome segments, Ne is the effective population size, and L is the length of the genome in Morgans.
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DGV and true genetic values. Reliabilities obtained in 
validation studies, however, remain the best predictions 
of accuracy available from a practical point of view. 
They reflect the correlations between predictions and 
the progeny-based estimates of breeding values that 
are observed when applying genomic selection in the 
field. The large differences in predictions when using 
different Me for the same formula, or between results 
for cow and sire reference populations, tend to point to 
problems with deterministic formulas rather than with 
observed reliabilities.

Based on the above, the Daetwyler formula seems to 
give reasonably accurate estimates for bull reference 
populations, provided Me1 is used and Ne is estimated 
correctly. For cow reference populations, the Daetwyler 
formula with Me1, Me2, and the other values of Me that 
we tested, or the formulas proposed by Goddard (2009) 
or Goddard et al. (2011), were less than satisfactory 
because they either underpredicted or overpredicted 

observed reliabilities by large amounts in most cases. 
Overall, more accurate predictions of accuracy would 
have been obtained with the Daetwyler formula when 
averaging the predicted reliabilities obtained with Me1 
and Me2 than when using either Me1 or Me2. The only 
exception is for smaller reference population sizes and 
low heritability, in which case predicted reliabilities 
based on Me2 were closer to observed reliabilities.

One likely problem is that these methods do not 
effectively account for relationships between selection 
candidates and the reference population. They also 
assume that additional individuals added to the refer-
ence population are unrelated. However, the accuracy 
of genomic selection depends not only on linkage dis-
equilibrium but also on family relationships. Accuracy 
increases as the reference population becomes more 
related to the predicted population (MacLeod et al., 
2014). The short time gap and high degree of relation-
ship between reference and predicted populations in 

Table 6. Comparison between predicted reliability (based on the Daetwyler formula using different estimates of Ne and Me) and observed 
reliability for various Holstein cow reference populations in the United States1

Trait  No. of cows
Observed 

REL

Daetwyler REL

Me1

 

Me1

 

Me2

Ne = 100 Ne = 50 Ne = 100

Protein percentage 5,000 0.62 0.30 0.47 0.82
(h2 = 0.50) 10,000 0.68 0.47 0.65 0.91
 20,000 0.78 0.65 0.80 0.95
Protein yield 5,000 0.48 0.20 0.34 0.72
(h2 = 0.30) 10,000 0.51 0.34 0.51 0.84
 20,000 0.53 0.51 0.68 0.91
Productive life 5,000 0.40 0.06 0.12 0.39
(h2 = 0.08) 10,000 0.43 0.12 0.21 0.56
 20,000 0.51 0.21 0.35 0.72
Daughter pregnancy rate 5,000 0.24 0.03 0.06 0.24
(h2 = 0.04) 10,000 0.26 0.06 0.12 0.39
 20,000 0.30 0.12 0.21 0.56
1REL = reliability; Me1 = 2NeL as per Hayes et al. (2009b); Me2 = 2NeL/Log(4NeL) as per Goddard (2009), where Me is the number of indepen-
dently segregating chromosome segments, Ne is the effective population size, and L is the length of the genome in Morgans.

Table 7. Comparison between predicted reliability (based on the Daetwyler formula using different estimates of Ne and Me) and observed 
reliability for Holstein bull reference populations in the United States, for traits with various heritabilities1

Trait Heritability Observed REL2

Daetwyler REL

Me1

 

Me1

 

Me2

Ne = 100 Ne = 50 Ne = 100

Protein percentage 0.50 0.90 0.82 0.91 0.98
Protein yield 0.30 0.66 0.81 0.91 0.98
Fat yield 0.30 0.74 0.81 0.91 0.98
SCS 0.12 0.68 0.77 0.88 0.98
Daughter pregnancy rate 0.04 0.58 0.67 0.81 0.96
1REL = reliability; Me1 = 2NeL from Hayes et al. (2009b); Me2 = 2NeL/Log(4NeL) from Goddard (2009), where Me is the number of indepen-
dently segregating chromosome segments, Ne is the effective population size, and L is the length of the genome in Morgans.
2Observed REL based on reference bulls only (n = 21,883 bulls; Cooper et al., 2014).
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this study led to relatively high observed reliabilities 
from cow reference populations, which the Daetwyler 
formula with Me1 may have underpredicted.

Deterministic formulas also do not account for the 
depth of the reference population in terms of the 
number of generations of animals with genotypes and 
phenotypes. Realized selection accuracy may be quite 
different for a reference population composed of 10 
generations with 400 animals per generation, compared 
with one with 2 generations with 2,000 animals each, 
even though they would have the same total number 
of animals and therefore the same predicted accuracy 
when the formula is based only on that number. This 
may explain in part why comparisons between observed 
and predicted accuracy are quite different for sire ref-
erence populations and cow reference populations, as 
seen in this study. With sire populations, genotypes are 
obtained from frozen semen, so that many generations 
are typically represented. On the other hand, cow refer-
ence populations only cover a limited number of gen-
erations. Most of the cow genotypes used in our study 
were collected since 2009, and therefore correspond to 
a limited number of generations. The same would apply 
to any recently constituted cow reference population 
for a novel trait. As a result, for dairy cattle selection, 
the time gap between the reference population and the 
selection candidates is usually shorter for cow than for 
sire reference populations.

A possible approach to address the above short-
comings and obtain better predictions of accuracy of 
genomic selection when planning for the development 
of a cow reference population for novel traits would 
be to select a group of genotyped cows in the same 
breed that mimics the population structure in which 
selection for the novel trait will be applied. This should 
be done for both reference and candidate animals. It 
would not matter that these animals do not have a 
novel phenotype, as long as the structure of the popula-
tion resembles what will eventually occur in practice. 
The method described by VanRaden (2008) could then 
be used to calculate individual reliabilities for selection 
candidates, based on the genomic relationship matrix 
(G) for the prospective cow reference population, the 
vector of relationships of the selection candidate with 
each of the individuals in the reference population (C), 
and the estimated heritability of the novel trait. The 
average of individual reliabilities then provides an esti-
mate of observed reliability which accounts for relation-
ships between selection candidates and the reference 
population. Wientjes et al. (2013) proposed a method 
to compute Me based on the same matrices G and C. 
In simulation studies, they found similar reliabilities for 
the VanRaden (2008) method and for the Daetwyler 

formula using this new Me. Therefore, the 2 methods 
seem roughly equivalent and either could be used.

The fact that the Daetwyler formula based on Me1 
underpredicts observed reliabilities is encouraging for 
those attempting to build cow reference populations for 
novel traits. Based on our results, it appears possible to 
obtain moderate accuracies over a fairly wide range of 
population sizes and heritabilities. Because the effects 
of population structure and selection have an important 
effect on the accuracy of genomic predictions (Clark et 
al., 2012), one might conclude that these results are 
more applicable to the North American Holstein popu-
lation, than to other livestock populations. However, 
the above situation, with intense selection resulting in 
a smaller Ne and a relatively short time gap between 
the reference population and the group of animals for 
which genomic predictions are used, is commonly found 
in most selected livestock populations today.

Predicting the Impact of Indicator Traits

Results on the use of indicator traits for DMI are 
shown in Table 8. With the assumptions used in this 
study, the reliability of the DGV of young animals for 
DMI was 0.20 for 5,000 phenotyped cows and 0.34 
for 10,000 phenotyped cows when no indicator traits 
were used. When only indicator traits were used, the 
reliability for DMI was 0.34 or 0.43, depending on 
whether there were 2,000 or 10,000 sires with MIR 
data on their daughters. These figures increased to 0.50 
and 0.56, respectively, when both direct and indirect 
sources of information for DMI were combined. These 
results show that indicator traits are a powerful way 
to increase the accuracy of evaluation for novel traits 
when such traits are expensive or difficult to record. 
In this example, however, reliability estimates for the 
cow reference population were likely underestimated by 
the Daetwyler formula, which was based on Me1 and 
Ne = 100. The use of indicator traits would have less 
effect if direct selection, based on cow genotypes and 
phenotypes for DMI, had a higher reliability.

Although part of the progress achieved through the 
use of indicator traits is already occurring as a result 
of selection for production, the use of DMI phenotypes 
provides a new avenue for improvement of this trait. 
One should also note that the efficiency of multi-trait 
selection depends in large part on the use of accurately 
estimated genetic correlations between the objective 
and indicator traits. The collection of a large enough 
number of phenotypes for a novel trait therefore serves 
not only to generate genomic predictions for the trait 
itself, it is also a prerequisite for effective indirect se-
lection. In addition, routine collection of a sufficient 
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amount of data on a novel trait provides a means to 
validate the assumptions and effect of indirect selec-
tion.

Although the above example dealt with DMI and 
some of its indicator traits, a similar approach, based 
on a multitrait genomic evaluation model or on com-
bining DGV for all traits based on their reliabilities 
and correlations, can be used to increase the accuracy 
of genetic evaluations for any novel trait. It can also be 
used to predict the expected reliability achievable for 
various scenarios, as we have done here.

CONCLUSIONS

Traits associated with animal health, animal welfare, 
feed efficiency, and environmental impact are becom-
ing increasingly important for the North American 
dairy cattle industry. Technological advances make it 
easier to collect phenotypes for many of these traits, 
and genomic selection offers new opportunities for their 
selection. For traits that remain very expensive to col-
lect, the development of cow reference populations is 
an option that is actively being considered. Validation 
studies based on random samples of genotyped Hol-
stein cows in North America appear to indicate that 
the prediction accuracy achievable from such cow refer-
ence populations is larger than that predicted by the 
Daetwyler formula. An example using DMI also shows 
that the prediction accuracy of novel traits can be sub-
stantially increased by the use of indicator traits.
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