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ABSTRACT

Many studies leverage targeted whole-genome se-
quencing (WGS) experiments to identify rare and 
causal variants within populations. As a natural conse-
quence of their experimental design, many of these sur-
veys tend to sequence redundant haplotype segments 
due to their high frequency in the base population, and 
the variants discovered within sequencing data are dif-
ficult to phase. We propose a new algorithm, called 
inverse weight selection (IWS), that preferentially se-
lects individuals based on the cumulative presence of 
rare frequency haplotypes to maximize the efficiency of 
WGS surveys. To test the efficacy of this method, we 
used genotype data from 112,113 registered Holstein 
bulls derived from the US national dairy database. We 
demonstrate that IWS is at least 6.8% more efficient 
than previously published methods in selecting the 
least number of individuals required to sequence all 
haplotype segments ≥4% frequency in the US Holstein 
population. We also suggest that future surveys focus 
on sequencing homozygous haplotype segments as a 
first pass to achieve a 50% reduction in cost with an 
added benefit of phasing variant calls efficiently. To-
gether, this new selection algorithm and experimental 
design suggestion significantly reduce the overall cost 
of variant discovery through WGS experiments, mak-
ing surveys for causal variants influencing disease and 
production even more efficient.
Key words: whole-genome sequencing, redundancy, 
haplotype, inverse weight selection

INTRODUCTION

Whole-genome sequencing data (WGS) is a tool 
that will be increasingly leveraged for the genomic se-
lection of dairy cattle traits in the near future. Whole-
genome sequencing experiments in cattle range from 

efforts to increase imputation accuracy (Daetwyler et 
al., 2014), develop genotyping by sequencing (GBS) 
strategies (Elshire et al., 2011), and identify causal 
variants affecting disease or productive traits (Sonste-
gard et al., 2013). In all cases, these experiments stand 
to benefit from improved methods for sample selection 
to decrease the cost of sequencing and gold standard 
variant data sets to validate newly discovered variant 
calls. Although much discussion has been given to such 
sample selection strategies in the past (Druet et al., 
2014; Yu et al., 2014), these methods may not account 
for biases inherent in individual sequencing platforms 
themselves, which may affect subsequent analysis and 
attribution of rare variant calls.

As increasing focus is given to GBS technologies 
for efficiently genotyping large herds of cattle (Elshire 
et al., 2011), developing the means to correct for bi-
ases inherent in short-read sequencing platforms is of 
paramount importance. This is particularly the case 
in scenarios where researchers are considering the use 
of low-coverage sequence data to reduce costs associ-
ated with genotyping animals (Yu and Sun, 2013). To 
date, the cattle research community lacks the exten-
sively validated pool of variants available to human 
subject researchers (Abecasis et al., 2012) that have 
enabled the production of finely tuned WGS variant 
calling software. Creation of such a resource would al-
low for the use of a run- and platform-specific filtration 
method that uses a mixture of models to distinguish 
between sequencing artifacts and true positive variants 
(McKenna et al., 2010). Additionally, lists of validated, 
pre-existing variant sites can be used to increase the 
rate of alignment of variable sequence reads, thereby 
hastening the computation of animal genotypes.

The phasing of WGS variant calls represents a sub-
stantial challenge, particularly when the target variant 
calls are of low frequency within the population. The 
average spacing of SNP markers on common cattle 
genotyping chips (49.4 kbp for the BovineSNP50 v2; 
3.43 kbp for the Illumina BovineHD; Illumina Inc., San 
Diego, CA) is far too large to allow for sequence read-
based phasing (read lengths of 100 to 200 bp) of vari-
ants with existing genotype markers (McKenna et al., 
2010). To compensate for this deficiency, researchers 
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may sequence the parents of the sample used in a WGS 
experiment to guarantee the phasing of heterozygous 
variant sites by tracing parental origin of haplotypes. 
This increases the cost of sequencing 3-fold when rare 
variant sites—such as those predicted to be within 
haplotypes affecting fertility (VanRaden et al., 2011)—
must be properly phased in a target sample.

In this study, we investigated the use of several meth-
ods of selecting animals for sequencing that will produce 
(1) a set of highly validated variants ranging from high 
to low frequency in the entire registered US dairy herd, 
(2) phasing of rare variants to improve whole genome 
imputation, and (3) the most efficient sequencing strat-
egy in terms of sequencing costs. We propose a new 
strategy for sequencing sample selection, compare it to 
a previously published method (Druet et al., 2014), and 
show that substantial gains in efficiency can be made 
by prioritizing the sequencing of rare haplotypes.

MATERIALS AND METHODS

Data Accession

Individual haplotypes for all 112,113 registered Hol-
stein bulls were retrieved from the Council of Dairy 
Cattle Breeding’s (CDCB; Reynoldsburg, OH) US 
national database. Haplotypes were defined as follows: 
first, all Holstein animal genotypes were imputed to 
60,671 common SNP biallelic markers from several 
different genotyping arrays using FindHap version 
3 (http://aipl.arsusda.gov/software/findhap/) with 
settings that included 4 iterations and 3 haplotype 
widths. Use of different size haplotype intermediates in 
the FindHap algorithm helps improve imputation from 
lower density chips, but only haplotypes from the short 
100-SNP segments were used in choosing bulls. The 
segments are nonoverlapping, and the list of individual 
haplotypes is identified from the combinatorial pattern 
of imputed SNP marker states. Given that the final 
haplotypes were based on a fixed count of SNP mark-
ers, they varied in terms of base pair lengths (average: 
4,258,451 bp; standard deviation: 1,484,696 bp). Each 
haplotype’s frequency was estimated from the entire 
population of Holstein animals in the national data-
base. Due to logarithmic increases in haplotype counts 
at lower frequency values, we excluded all haplotypes 
below a 4% frequency threshold in the population.

Sequencing Strategy and Sample Filtration

In all subsequent cases, algorithms were tasked with 
identifying the minimum number of samples needed to 
sequence all haplotypes above a 4% frequency thresh-
old. At this frequency threshold, 3,680 haplotypes were 

present in the national database that were considered 
for sequencing. Only haplotypes that were present in a 
homozygous state in target individuals were considered 
to remove the need to phase variants. To simulate con-
straints on sample availability, we restricted our search 
to bulls contained within the Cooperative Dairy DNA 
Repository’s (CDDR; Columbia, MO) database that 
had greater than 3 semen straws in stock.

Random Selection of Samples

As a point of comparison for subsequent algorithms, 
we selected samples at random (RAND) from the 
filtered list of bulls meeting our CDDR presence re-
quirements. Random selection was implemented using 
the “PROC SURVEY SELECT” command within 
SAS version 9.4 (SAS Institute Inc., Cary, NC), and 
animals were selected until all haplotypes above the 
4% frequency threshold were covered by at least one 
individual. To account for the variability of random 
selection, we performed 10 replicates of this method 
and averaged the results.

Maximizing Haplotype Coverage from the Population

We generated 2 implementations of a method pro-
posed by Druet et al. (2014) that maximized the haplo-
type coverage from the population (termed “AHAP” in 
the manuscript). To account for the differing objectives 
of this survey, we made slight modifications to the al-
gorithm to account for different study goals (see Figure 
1). The first, labeled AHAP1, is the base implemen-
tation of the method to maximize haplotype coverage 
that was proposed (Druet et al., 2014). We use the 
same terms as Druet et al. (2014) to avoid confusion. 
In short, the frequency of ancestral haplotypes is cal-
culated using PHASEBook (Druet and Georges, 2010), 
and then a score is generated for every individual by 
summing the frequency of the haplotype at every SNP 
locus. This score represents the haplotype contribution 
of each animal and can therefore be used to prioritize 
individuals for sequencing. We note 2 significant depar-
tures from the original implementation of AHAP1: (1) 
the probability of sequencing depth of coverage for the 
haplotype [approximated as (1 − 0.5nki), where n was 
the sequencing depth of coverage, k was the frequency of 
the ancestral haplotype, and i was the SNP marker site] 
was removed as our survey assumed uniform sequence 
coverage across samples, and (2) FindHap was used to 
identify haplotype segments that were used in lieu of 
PHASEBook (Druet and Georges, 2010) haplotypes. 
Both AHAP methods used the following equation to 
generate scores for the efficient selection of animals for 
sequencing:
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In the above equation, fi is the frequency of the hap-
lotype in the entire national database, as determined 
by FindHap, and NHAP is the total number of hap-
lotypes. Only haplotypes that are homozygous within 
the sample were counted toward the sample’s weight for 
selection. After calculating the weight of all samples in 
the database, sample sequencing priority was assigned 
by sorting the samples in descending order and select-
ing the least number of samples that would cover all 
haplotypes above the 4% frequency threshold.

The AHAP2 implementation differed from AHAP1 
by being an iterative approach rather than a strict 
ranking algorithm. After sample weights were deter-
mined, the samples were sorted in descending order 
based on their cumulative weights. The sample with 
the highest weight was selected for sequencing and all 
homozygous haplotypes that the sample contained were 
removed from consideration from all samples in the 
next iteration. Sample weights were then recalculated 
and sorted in descending order. The iteration continued 
until all homozygous haplotypes above 4% frequency 
were represented in the selected samples.

Inverse Weight Selection

To preferentially select samples that carried rare 
frequency haplotypes, we developed an algorithm—in-
verse weight selection (IWS)—that uses an inverted 
parabolic function to calculate sample sequencing value 
(weight). Sample weight was determined by the follow-
ing equation:

 Sample weight if homozygous,= − + =
=
∑ f f ii i
i

NHAP
2

1

2 1  

where fi is the frequency of haplotype i in the national 
database. As fi approaches zero, the haplotype’s score 
approaches 1. Haplotypes that are more frequent in the 
database give increasingly smaller cumulative weight 
to the sample. After cumulative sample weights were 
calculated, the samples were sorted in descending order 
and the sample with the highest cumulative weight was 
selected for sequencing. As in our implementation of 
AHAP2, all homozygous haplotypes of the sample with 
the highest weight were excluded from further consid-
eration, and sample weights for all remaining samples 
in the database were recalculated. The next highest 
weight sample was selected, and the iteration contin-

ued until all homozygous haplotypes at or above 4% 
frequency were represented.

RESULTS AND DISCUSSIONS

Sample Selection for Sequencing

With the goal of selecting the least number of animals 
with haplotypes above a specific frequency threshold, 
we tested several algorithms designed to prioritize indi-
viduals for sequencing based on prior SNP genotyping 
information. In the genomics era of animal breeding, 
livestock animals have been extensively genotyped us-
ing high- and low-density SNP genotyping platforms, 
making realistic test cases for the use of such algorithms 
possible. As such, we used genotypes derived from the 
US national dairy database and haplotypes calculated 
by the national US dairy genomics evaluation (data 
provided by the CDCB) as our input data for each 
selection algorithm. The total number of predicted hap-
lotypes in the national database was 110,588; however, 
we selected only those haplotypes that were at or above 
4% frequency (3,680) to provide a reasonable target for 
a sequencing project that would be initiated by a fund-
ed research group. When considering other haplotype 
cutoff thresholds lower than 4% frequency, the number 
of haplotypes that needed to be sequenced increased 
dramatically. For example, there were 5,096 haplotypes 
at or above a frequency of 3% (a 40% increase; data not 
shown). The constant attrition of recombination and de 
novo mutation likely generated many of the extremely 
rare frequency haplotypes observed in the database, so a 
sequencing project that targets all observed haplotypes 
is likely to be prohibitively expensive and never-ending. 
Based on the sum total frequency of all haplotypes in 
the national database, we estimate that the sequencing 
of all haplotypes ≥4% frequency accounts for 58.7% of 
the currently observed DNA within the Holstein popu-
lation in the United States.

Methods for selection varied with respect to their 
weighting of haplotype frequency in the population, 
with both AHAP1 and AHAP2 methods selecting 
high-frequency haplotypes first and IWS preferring 
lower-frequency haplotypes. A RAND method was 
also tested to compare the efficiency of each algorithm 
against an uninformed selection of animals to sequence. 
To test the utility of these methods, we tested the level 
of efficiency of each algorithm in selecting animals that 
represented all considered haplotypes. In the full test, 
IWS was superior to the other algorithms, as its results 
selected the fewest individuals (n = 250) that contained 
all homozygous haplotypes above a 4% frequency in 
the database. The modified AHAP2 method was the 
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next most efficient method (n = 267), having selected 
17 more animals for sequencing over the IWS data set 
(6.8% more animals than IWS). Surprisingly, the origi-
nal AHAP1 algorithm was the least efficient method, 

with results of 5,325 individuals before accounting for 
all target haplotypes (21.3-fold more than IWS). This 
significant increase is primarily due to the nonitera-
tive nature of AHAP1, which does not rescore animals 

Figure 1. A schematic demonstrating each algorithm, with IWS = inverse weight selection, AHAP1 = maximizing haplotypes coverage from 
the population, and AHAP2 = modified version of AHAP1 with recursion. The preliminary data accession (A) was similar for each subsequent 
algorithm, and it resulted in the identification of haplotype segments within the population of sampled individuals (A1, A2,…, An). Each 
individual algorithm (B) sought to identify the least number of individuals that contained all haplotypes identified in the data accession step.
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based on previously selected haplotypes. Adding this 
feature (as implemented in AHAP2) resulted in a 20-
fold improvement in the efficiency of the algorithm 
with respect to its original implementation. When we 
compared methods with respect to the number of times 
that they sequenced the same haplotype segment, we 
found that the highest count of unique haplotypes per 
animal was identified using IWS (1,150 haplotypes) 
out of all other methods (see Figure 2). Haplotypes 
selected using AHAP1 had higher redundancy than all 
other methods (average: 661, maximum: 2,137) and was 
notably worse than RAND.

We also compared the results of our selection algo-
rithms against an approach that preferentially selects 
highly influential bulls for sequencing. This is a heu-
ristic alternative to a method for selecting influential 
ancestors (Goddard and Hayes, 2009), insofar as it 
selects bulls with the most direct descendants. We first 
selected all bulls in the national database that had more 
than 5,000 milk-recorded daughters and then sorted 
the individuals based on their number of daughters. To 
compare the efficiency of this method against the other 

algorithms, we treated this data set similarly to our 
implementation of AHAP1, and selected the minimum 
number of sequential animals it would take to account 
for all targeted haplotypes. This approximation of the 
influential ancestor method required 447 bulls with 
>5,000 daughters with milk records to account for all 
haplotypes >4% frequency.

Incidental Rare Haplotype Selection

One fringe benefit of targeted sample selection for 
WGS may be the incidental sequencing of rare hap-
lotypes (<4% frequency) that were not originally 
considered in the initial selection calculation. When 
we accounted for homozygous haplotypes below the 
initial frequency threshold in the selected animals from 
each algorithm, we found a substantial number of hap-
lotypes that were sampled in passing (Table 1). The 
results of AHAP1 incidentally accounted for the larg-
est number of rare frequency, homozygous haplotypes 
(6,362) whereas AHAP2 and IWS results contained 
the fewest (3,367 and 3,400, respectively). This rela-

Figure 2. A count of the number of times each haplotype (total haplotype count = 3, 680) is sequenced in passing by 4 algorithms (IWS = 
inverse weight selection, RAND = random animal selection, averaged over 10 replicates, AHAP1 = maximizing haplotypes coverage from the 
population, and AHAP2 = modified version of AHAP1 with recursion). The x-axis shows the number of times a haplotype is sequenced, and 
the y-axis is the count of haplotypes that were sequenced X times.
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tive benefit of AHAP1 is most likely due to the higher 
number of sampled animals that the algorithm selected 
rather than any improvement in efficiency. When rare 
haplotype counts are normalized by dividing the total 
number of animals selected by each algorithm, IWS 
(13.6 rare haplotypes per animal sequenced) results 
showed a nearly 2-fold greater efficiency in incidental 
selection over RAND (average of 7.7 rare haplotypes 
per animal sequenced) and a 10% improvement over 
AHAP2 (average of 12.6 rare haplotypes). When all 
haplotypes (heterozygous and homozygous) were ac-
counted for, the same trend was observed, with AHAP1 
(78.37 rare haplotypes per animal sequenced) results 
having a lower proportion of sequenced haplotypes 
than IWS, AHAP2, and RAND (238.21, 232.09, and 
166.36, respectively). When incidental haplotypes were 
considered in estimates of the currently observed DNA 
present in the Holstein breed, we found that combined 
IWS and AHAP2 animal haplotypes represented 69.6 
and 69.3% of all observed Holstein DNA, respectively. 
Although several cattle sequencing studies have pur-
portedly accounted for a similar proportion of cattle 
breed DNA after sequencing a fraction of the number 
of samples (Jansen et al., 2013; Baes et al., 2014; Daet-
wyler et al., 2014), the DNA proportion estimates from 
these studies were made using pedigree-based relation-
ships and do not account for cryptic genetic diversity in 
these breeds that may arise from common ancestors not 
present in the pedigree. Therefore, it is likely that the 
use of these pedigree-based calculations overestimate 
the true proportion of genetic diversity captured within 
the sequenced founder animals, and that our estimates 
using haplotypes derived from dense marker genotypes 
are more accurate (VanRaden, 2008).

Sequencing Cost Estimates

High sample sequencing costs are a realistic limit to 
the size of sequencing studies that laboratories can af-
ford to perform. Using a per-megabase cost estimate of 
$0.05 from recent National Human Genome Research 
Institute (NHGRI) surveys, the cost to generate 1× 
coverage cattle WGS data from a sample is approxi-

mately $140 (http://www.genome.gov/sequencing-
costs/; 2,800 Mb genome size × $0.05/Mb). Because 
the accuracy of SNP calling is greatly improved by in-
creasing the depth of coverage over a given region of the 
genome (Bentley et al., 2008; Liu et al., 2012; O’Rawe 
et al., 2013; Yu and Sun, 2013), realistic experiments 
would expect to sequence individual, unrelated samples 
with several-fold coverage to ensure accurate results. 
Original estimates of required read depth for accurately 
calling SNP suggested that 15× coverage was needed 
for homozygous variants and 30× coverage for hetero-
zygous variants (Bentley et al., 2008), suggesting that 
2-fold higher coverage is needed to accurately predict 
heterozygous variants. By focusing on homozygous 
haplotypes and the predicted homozygous variants 
within them, sequencing costs can be effectively halved 
($2,100 per sample at 15× vs. $4,200 per sample at 
30×) by using a lower depth of coverage. Additionally, 
targeting predicted homozygous haplotypes provides 
the benefit of removing the need to phase variant calls. 
Because improvements in SNP calling algorithms have 
reduced the requirement for higher depth of coverage 
(Li et al., 2009; McKenna et al., 2010; Yu and Sun, 
2013), targeting 6× coverage per sample (~$840 per 
sample) would further lower costs. Even with the 2 
aforementioned cost savings strategies, the most effi-
cient sample selection strategy, IWS, would still require 
a budget of $210,000 to sequence all haplotypes above 
4% frequency in the national database. This represents 
a savings of $14,280, $342,720, and $4,263,000 over the 
AHAP2, RAND, and AHAP1 selection methods (Table 
2), but still represents a sizeable investment of capital 
in a single project.

Given that current costs of WGS data are still 
prohibitively expensive when sampling hundreds of 
individuals at a time, we estimated the efficiency of 
each method at different fixed levels of samples se-
quenced. We predict that many laboratories may only 
be able to sequence a set number of individuals within 
a given budget, so this approach gives a fair estimate 
of the nonredundant genomic information that can be 
retrieved at different stages of ordered sampling. We 
selected 4 fixed sample levels (20, 50, 100, and 200 

Table 1. Selection performance of different algorithms to account for all haplotypes in the data set

Algorithm1
Animals for 

haplotypes ≥4%
Incidental haplotypes 

(<4% frequency)
Incidental haplotypes 
per animal sequenced

IWS 250 3,400 13.6
RAND 658 5,094 7.7
AHAP1 5,325 6,362 1.2
AHAP2 267 3,367 12.6
1IWS = inverse weight selection; RAND = random animal selection, averaged over 10 replicates; AHAP1 = 
maximizing haplotypes coverage from the population; and AHAP2 = modified version of AHAP1 with recur-
sion.
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individuals sequenced, respectively), assumed that 
each sample level selected individuals in the order of 
their priority, and counted the number of unique ho-
mozygous haplotypes accounted for in each data set at 
each stage of completion (see Figure 3). In all 4 sample 
levels, IWS and AHAP2 were superior to the RAND 
and AHAP1 methods of selection. At the 50-sample 
threshold (equivalent to 20% of the total IWS animals 
that account for all haplotypes), IWS-selected animals 
accounted for 63.4% of the 3,680 haplotypes (Table 3). 
At the same threshold (50 samples), AHAP2, RAND, 
and AHAP1 accounted for 61.1, 27.6, and 43.5% of all 
considered haplotypes. Again, the noniterative nature 

of AHAP1 hurt the efficiency of the algorithm, though 
it still accounted for 2,613 haplotypes (71.0% of total) 
at the 200-sample threshold.

Putative Effect on Imputation

Identifying a high-quality, high-resolution set of vari-
ants within cattle sequencing data is likely to improve 
the accuracy of genotype imputation; however, care 
must be taken to realize the limitations of this data set 
with respect to this potential application. The human 
“1000 Genomes” phase 1 data set was used in the im-
putation of the Wellcome Trust phase 1 genotype data, 

Table 2. Cost efficiency of selection algorithms when sequencing all haplotypes ≥4% frequency

Algorithm1 No. of animals Cost to complete2 Average cost per haplotype3

IWS 250 $210,000.00 $57.07
RAND 658 $552,720.00 $150.20
AHAP1 5,325 $4,473,000.00 $1,215.00
AHAP2 267 $224,280.00 $60.95
1IWS = inverse weight selection; RAND = random animal selection, averaged over 10 replicates; AHAP1 = 
maximizing haplotypes coverage from the population; and AHAP2 = modified version of AHAP1 with recur-
sion.
2The cost to sequence all animals selected by the algorithm, assuming $840 per animal sequenced.
3The cost ratio to sequence 3,680 unique haplotypes by sequencing the selected animals in the algorithm.

Figure 3. For each algorithm (IWS = inverse weight selection, RAND = random animal selection, averaged over 10 replicates, AHAP1 = 
maximizing haplotypes coverage from the population, and AHAP2 = modified version of AHAP1 with recursion), the number of haplotypes 
sequenced at a set stage of sample completion is listed above each bar.
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and the resulting association study identified 2 disease-
causing variants that were initially overlooked but were 
confirmed in a follow-up study (Huang et al., 2012). 
Use of the initial 1000 bulls data from 234 sequenced 
bulls revealed a high degree of accuracy of imputed calls 
for SNP with a minor allele frequency >0.1; however, 
imputation accuracy rapidly decreased for rarer variant 
sites (Daetwyler et al., 2014). Given that the target 
haplotype frequency for the current study was 4%, we 
would expect high accuracy of imputation for variants 
within the haplotypes at or above that frequency level. 
The accuracy of imputation would likely decrease for 
variants lower than 4% frequency, similar to results 
presented using the 1000 bulls data set. Given that the 
results from IWS and our implementation of AHAP2 
provide scores that represent the novelty obtained by 
sequencing individual animals, it would be feasible to 
target lower frequencies of haplotypes by sequencing 
additional animals. As sequencing costs continue to de-
cline, sequencing additional animals that contain less-
frequent haplotypes may become an effective strategy.

CONCLUSIONS

To maximize the utility of WGS for genomic selec-
tion, we suggest several strategies for groups inter-
ested in using WGS for variant detection that would 
minimize costs associated with the technology. We have 
demonstrated that the use of an inverse weight function 
that prioritizes lower frequency haplotype segments is 
the most efficient algorithm for selecting a nonredun-
dant set of animals for sequencing. We also suggest 
that researchers selectively sequence haplotypes that 
are predicted to be homozygous from SNP genotype 
data, thereby reducing costs associated with higher 
depth of coverage sequencing and the phasing of vari-
ant calls. These 2 methods correspond to 6.8 and 50% 
reductions in cost for sequencing projects dedicated to 
novel variant discovery, respectively. Additionally, we 
demonstrate that our inverse weight selection algorithm 
prioritizes animals with higher unique genetic informa-

tion, which provides high value if only a small por-
tion of the whole population can be sequenced. When 
budget limitations preclude the ability of researchers to 
sequence representative animals from an entire popula-
tion, the use of cost-effective prioritization algorithms 
and sequencing strategies is the best method for ob-
taining novel genetic information.
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