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ABSTRACT

The objective of this study was to identify single 
nucleotide polymorphisms and gene networks associ-
ated with 3 fertility traits in dairy cattle—daughter 
pregnancy rate, heifer conception rate, and cow con-
ception rate—using different approaches. Deregressed 
predicted transmitting abilities were available for ap-
proximately 24,000 Holstein bulls and 36,000 Holstein 
cows sampled from the National Dairy Database with 
high-density genotypes. Of those, 1,732 bulls and 375 
cows had been genotyped with the Illumina BovineHD 
Genotyping BeadChip (Illumina Inc., San Diego, CA). 
The remaining animals were genotyped with various 
chips of lower density that were imputed to high den-
sity. Univariate and trivariate genome-wide association 
studies (GWAS) with both medium- (60,671 markers) 
and high-density (312,614 markers) panels were per-
formed for daughter pregnancy rate, heifer conception 
rate, and cow conception rate using GEMMA (version 
0.94; http://www.xzlab.org/software.html). Analyses 
were conducted using bulls only, cows only, and a sam-
ple of both bulls and cows. The partial correlation and 
information theory algorithm was used to develop gene 
interaction networks. The most significant markers 
were further investigated to identify putatively associ-
ated genes. Little overlap in associated genes could be 
found between GWAS using different reference popula-
tions of bulls only, cows only, and combined bulls and 
cows. The partial correlation and information theory 
algorithm was able to identify several genes that were 
not identified by ordinary GWAS. The results obtained 
herein will aid in further dissecting the complex biol-
ogy underlying fertility traits in dairy cattle, while also 
providing insight into the nuances of GWAS.
Key words: fertility, genome-wide association, high-
density genotypes, network analysis

INTRODUCTION

Selection for increased production has been very suc-
cessful in the dairy industry. Simultaneously, however, 
cow fertility has undergone a significant decline. As a 
result, many of today’s dairy cows experience fertil-
ity problems, resulting in a national 21-d pregnancy 
rate average of only approximately 15% (Norman et 
al., 2009). Despite a recent upward trend in traits such 
as daughter pregnancy rate (DPR), conception rate, 
days to last breeding after calving, and calving interval 
(Norman et al., 2009), fertility traits remain an area of 
high concern for dairy producers. Fertility problems are 
one of the most frequent reasons for culling (Bascom 
and Young, 1998; Liang, 2013). They are also one of 
the most costly problems to manage, with each lost 
pregnancy costing an average of approximately $500 in 
2006 (De Vries, 2006).

With the increased availability of dense SNP marker 
panels, genomic selection methods have been widely 
investigated and implemented in livestock species. Ge-
nomic selection may prove to be especially beneficial 
for traits such as fertility that can be difficult or ex-
pensive to measure (Calus et al., 2013). The decreasing 
cost of marker panels has resulted in more bulls and 
cows being genotyped. Improved prediction accuracy 
is achieved when both bull and cow populations are 
included in evaluations (Calus et al., 2013). Marker 
panels are now also available at a high-density level of 
approximately 800,000 SNP markers, compared with 
the initial average of approximately 50,000 markers. 
This increased density may provide more power when 
identifying significant associations (e.g., Khatkar et al., 
2008; Meredith et al., 2013).

Fertility-associated phenotypes are considered com-
plex traits with low heritabilities. Heritability of DPR 
has been estimated to be approximately 0.04 and heri-
tabilities of cow and heifer conception rate (CCR and 
HCR, respectively) are approximately 0.01 (VanRaden 
and Cole, 2014). The antagonistic genetic relationship 
between cow fertility and production has been previous-
ly documented (e.g., VanRaden et al., 2004; Pritchard 
et al., 2013). Direct selection for female fertility was 
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initiated in the United States in 2003 with the intro-
duction of genetic evaluations for DPR (VanRaden et 
al., 2003). Since then, DPR has been incorporated into 
all major selection indices utilized by US dairy farmers, 
with a relative weight of approximately 7% of the total 
economic value. The Animal Improvement Programs 
Laboratory (now Animal Genomics and Improvement 
Laboratory, Beltsville, MD) began evaluations for HCR 
and CCR in 2010.

Genetic correlations between traits may be indicative 
of QTL having pleiotropic effects. Linkage experiments 
utilizing multiple trait analysis have shown increased 
power to detect QTL (Knott and Haley, 2000; Korol 
et al., 2001). Bolormaa et al. (2010) found that the 
statistical power to detect associations was as good or 
better when using multiple-trait rather than single-trait 
models to perform genome-wide association studies 
(GWAS). Additional associations have been identified 
in multiple-trait analyses compared with single-trait 
analyses without increasing the false discovery rate 
(Bolormaa et al., 2010). Using a multiple-trait model 
incorporating traits related to fertility may allow for 
putative fertility QTL to be identified.

Complex traits such as fertility are likely influenced 
by a large number of genes, each with a small absolute 
effect. In typical GWAS procedures, stringent signifi-
cance thresholds are needed to avoid false positives, but 
this may consequently prevent significant genes with 
small effects from being identified (McCarthy et al., 
2008). Systems biology approaches have been proposed 
to more thoroughly explore the genetic architecture of 
complex traits. Correlation networks are being used for 
analysis of differential gene expression data (Hudson 
et al., 2009, 2012) as well as genotype data (Fortes et 
al., 2010, 2013). In particular, the partial correlation 
and information theory (PCIT) algorithm has been 
shown to have higher sensitivity for identifying effects 
of smaller magnitude by exploring gene-to-gene associa-
tions (Reverter and Chan, 2008). The objectives of the 
following research were to identify genes and biological 
networks putatively associated with fertility in dairy 
cattle using several approaches. We expect that by us-
ing different reference populations, different genomic 
regions associated with fertility may be identified. We 
also anticipate that using the PCIT algorithm will al-
low additional associations to be identified that may 
not have previously met genome-wide significance.

MATERIALS AND METHODS

Phenotypic and Genotypic Data

Three traits of reproductive performance were 
analyzed herein: DPR, HCR, and CCR. All traits 

were defined as described by the Council on Dairy 
Cattle Breeding (https://www.cdcb.us/reference.htm). 
Daughter pregnancy rate represents the lactating cow’s 
interval of calving to conception. It is defined as the 
percentage of nonpregnant cows that become pregnant 
during each 21-d period. Heifer conception rate is the 
maiden heifer’s ability to conceive and is defined as the 
percentage of inseminated heifers that become pregnant 
at each service. Cow conception rate is the lactating 
cow’s ability to conceive, defined as percentage of in-
seminated cows that become pregnant at each service. 
Three population subsets were examined: bulls only, 
cows only, and a combination of bulls and cows. Traits 
were corrected for management group, permanent en-
vironment, and herd–sire interaction (VanRaden and 
Wiggans, 1991). For all analyses, deregressed PTA from 
the National Dairy Database (Council on Dairy Cattle 
Breeding, Bowie, MD) were used as the dependent vari-
able by weighting each PTA by the squared reliability. 
There were 24,041 bulls with records and 36,210 cows 
with records that also had genotypes available after im-
posing the restriction that PTA reliability was greater 
than parent average reliability. This was done to ensure 
that animals had information beyond only their parent 
average. Minimum reliability resulting from this restric-
tion was 10 in the cow population and 36 in the bull 
population, both for HCR. Few animals had these low 
reliabilities, however, as can be seen from the mean 
reliabilities (standard deviations) for each trait by 
population included in Table 1. A random sample with 
equal representation of bulls and cows was taken to 
create a combined population subset with comparable 
size to the bull-only and cow-only data sets with 24,880 
records.

Analyses were performed using 2 different marker 
densities. The set of markers used in computing US 
genomic predictions (Wiggans et al., 2013) was defined 
as moderate density (MD). The BovineHD Genotyping 
BeadChip (Illumina Inc., San Diego, CA) was used as 
a high-density marker panel (HD). Marker editing was 
performed to remove SNP with call rates less than 90%, 
allele frequencies that departed from Hardy-Weinberg 
equilibrium >0.15, and those with more than 2% 
parent-progeny conflicts. In total, 1,732 bulls and 375 
cows were genotyped with the HD chip. The remaining 
animals had genotypes from various chip densities that 
were imputed to the HD level using Findhap version 
3 (VanRaden et al., 2011). Imputation from lower to 
higher density has been shown to reach imputation 
accuracies greater than 99% (VanRaden et al., 2013). 
After editing, 60,671 and 312,614 markers remained in 
the MD and HD analyses, respectively (Wiggans et al., 
2010; VanRaden et al., 2013). All markers included in 
the MD analyses were also included in the HD analyses.
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Statistical Analysis

Univariate analyses were carried out for each trait in 
each population at both marker densities. A trivariate 
analysis also was carried out incorporating all 3 traits 
for each predictor population at both marker densities. 
The general univariate model fit was as follows:

 Y = μ + xβ + u + e, 

where Y is an n-vector of traits for n individuals, μ 
represents the intercept term, x is an n-vector of mark-
er genotypes, β is the effect size of the marker, u is an 
n-vector of random effects, and e is an n-vector of er-
rors. The vector of random effects was assumed to fol-
low an n-dimensional multivariate normal (MVN) dis-
tribution u K~ , ,MVNn 0

1λτ−( )  where τ−1 is the variance 
of residual errors, λ is the ratio between the 2 variance 
components, and K is a known n × n genomic relation-
ship matrix. The vector of errors was assumed to follow 
ε ~ , ,MVNn n0 1τ−( )I  where In is an n × n identity ma-
trix. No fixed effects (with the exception of an intercept 
term) were included in the models because the pheno-
types were precorrected. The trivariate model was 
similar with the exception of Y being an n × d matrix 
of d phenotypes from n individuals incorporating the 3 
traits (d = 3). The trivariate model is as follows:

 Y = μ + xβT + U + E, 

where Y is an n × d matrix of d phenotypes for n indi-
viduals, μ represents an intercept term, x is an n-vector 
of marker genotypes, β is a d vector of marker effect 
sizes for the d phenotypes, T indicates the transpose of 
this vector, U is an n × d matrix of random effects, and 
E is an n × d matrix of errors. In the following descrip-
tion of variance assumptions, MNn d× ( )0 1 2, ,V V  repre-
sents an n × d matrix normal (MN) distribution with 
mean 0, row covariance matrix V1 with dimensions n × 
n, and column covariance matrix V2 with dimensions d 
× d. The random effects matrix, U, was assumed to 
follow MNn d g× ( )0, , ,K V  where K is a known n × n relat-

edness matrix and Vg denotes a d × d symmetric ma-
trix of genetic variance components. The error matrix, 
E, was assumed to follow MNn d n n e× ×( )0, , ,I V  where In×n 
is an n × n identity matrix and Ve represents a d × d 
symmetric matrix of residual variance components 
(Zhou, 2014).

All analyses were performed with GEMMA version 
0.94 software (http://www.xzlab.org/software.html); 
GEMMA allows a multivariate linear mixed model to 
be fitted for testing marker associations with multiple 
phenotypes simultaneously (Zhou and Stephens, 2014). 
Here, GEMMA was used to estimate a relatedness ma-
trix by providing a mean genotype file and a phenotype 
file, both formatted as for BIMBAM (Servin and Ste-
phens, 2007). The centered relatedness matrix (Gc) for 
all analyses was computed as

 Gc i n i
i

p

i n i
T

p
x x x x= −( ) −( )

=
∑1 1 1
1

, 

where X is a matrix of n individuals by p markers, xi is 
the ith column of X representing the genotypes for the 
ith SNP, and xi is the sample mean (Zhou et al., 2013; 
Zhou, 2014).

A GWAS involves performing numerous tests of 
significance. The GEMMA software calculates a Wald 
test statistic and P-value for each SNP based on a null 
hypothesis of no SNP effect versus the alternative hy-
pothesis of the SNP effect being different from zero. A 
method of control is needed to account for false posi-
tives. False discovery rate (FDR) is a more powerful 
and flexible method than controlling for family-wise 
error rate (Storey, 2002). The FDR was calculated as 
described in Bolormaa et al. (2010):

 FDR
p s
s p

=
−( )
−( )
1

1
, 

where p represents the significance threshold or P-
value and s represents the proportion of significant 
SNP (number of significant SNP divided by the total 
number of SNP tested).

Table 1. Summary statistics of daughter pregnancy rate (DPR), cow conception rate (CCR), and heifer 
conception rate (HCR) including number of records, mean deregressed PTA and standard deviation (SD)

Item Bulls Cows Bulls and cows

No. of records 24,041 36,210 24,880
DPR mean (SD) −0.422 (2.12) 0.348 (2.87) −0.024 (2.53)
DPR mean reliability (SD) 80.89 (6.31) 68.96 (4.59) 74.88 (8.27)
CCR mean (SD) −1.604 (4.16) −0.418 (5.13) −0.976 (4.65)
CCR mean reliability (SD) 73.82 (8.77) 65.40 (4.82) 69.55 (8.37)
HCR mean (SD) −0.200 (3.65) 0.696 (4.29) 0.249 (4.04)
HCR mean reliability (SD) 65.09 (8.77) 58.55 (5.05) 61.76 (8.06)
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Correlation Network Analyses

To avoid imposing very stringent significance thresh-
olds due to multiple testing, the PCIT algorithm was 
used to examine putative significant pathways. This al-
gorithm allows the construction of gene co-association 
networks by combining concepts of partial correlation 
coefficients and information theory, allowing identifica-
tion of significant gene-to-gene associations (Reverter 
and Chan, 2008). Selection for the network favors genes 
containing SNP that have significant association with 
the investigated phenotypes (Reverter and Fortes, 
2013). Relevant SNP were identified from the asso-
ciation analysis by first selecting the top 0.2 or 0.1% 
most significant SNP from MD or HD chips, respec-
tively, from each of the 3 fertility traits. These SNP 
were ranked based on P-value. Second, significant (P 
< 0.05) SNP were then selected for inclusion based on 
their distance from a gene determined using BEDTools 
version 2.21.0 (Quinlan and Hall, 2010). Significant (P 
< 0.05) markers that were close (i.e., within 2,500 bp) 
to a gene, as well as markers that were very far from 
a gene (i.e., more than 1.5 Mb), were selected to be 
included in the PCIT analysis. This was performed fol-
lowing Fortes et al. (2010) based on expected linkage 
disequilibrium, size of promoter region, and likelihood 
of cis-acting windows. Marker selection was restricted 
to autosomal regions due to poorer annotation of the 
bovine sex chromosomes. Gene information was gath-
ered from the bovine UMD3.1 genome assembly (Zimin 
et al., 2009) utilizing bovine Ensembl gene IDs. After 
merging with the annotated gene data, approximately 
30,501 markers remained in the MD analysis and 
156,000 markers remained in the HD analysis to be 
used in the correlation network analysis.

From these selected SNP, an association weight ma-
trix (AWM) was constructed. In the AWM, each col-
umn corresponds to a trait and each row corresponds to 
a SNP. Each cell in the AWM corresponds to the z-score 
normalized effect size for that particular SNP and trait. 
In constructing the AWM, a “1 SNP to 1 gene” rule 
was implemented such that if multiple SNP mapped 
to the same gene, only the most significant SNP was 
retained for that gene. Row-wise partial correlations 
were computed on the AWM using the PCIT algorithm 
as described by Reverter and Chan (2008). The PCIT 
package (Watson-Haigh et al., 2010) was utilized in R 
version 3.2.1 (R Core Team, 2014) to implement the 
algorithm. Significant correlations were identified by 
the PCIT algorithm and represented as edges between 
genes (nodes) in the network. Correlation networks 
were visualized using Cytoscape version 3.2.1 (Shan-
non et al., 2003). Gene ontology (GO) enrichment was 
conducted with the PCIT results using DAVID (version 

6.7; Huang et al., 2009a,b). Genes selected by the PCIT 
algorithm were compared with a background list of Bos 
taurus genes.

RESULTS AND DISCUSSION

Summary statistics for each of the bull, cow, and 
combined bull and cow data sets are provided in Table 
1. Table 2 provides heritability estimates, as well as ge-
netic and phenotypic correlations, for DPR, CCR, and 
HCR, as given in VanRaden and Cole (2014). These 
were calculated from PTA correlations of Holstein 
bulls with high reliabilities, also from the US Holstein 
population. Supplemental Tables S1 to S24 list mark-
ers evaluated in the study (http://dx.doi.org/10.3168/
jds.2015-10444).

Genome-Wide Association Analyses

Bulls. The first analyses performed were classical 
GWAS to identify markers putatively associated with 
fertility. Several thresholds were investigated before 
determining a threshold of –log(P-value) >3.0 for MD 
data and –log(P-value) >4.0 for HD data that resulted 
in a reasonable number of markers to investigate fur-
ther. There were 64 (0.94), 68 (0.88), and 81 (0.74) 
markers (FDR) exceeding the threshold for the CCR, 
DPR, and HCR analyses, respectively, in analyses using 
MD marker data. For the HD marker data, 40 (0.76), 
58 (0.53), and 67 (0.46) markers exceeded this level 
in the CCR, DPR, and HCR analyses, respectively. A 
trivariate analysis including all 3 traits also was per-
formed. There were 94 (0.64) markers (FDR) in the 
MD trivariate analysis and 93 (0.33) markers (FDR) in 
the HD trivariate analysis that exceeded the threshold 
after merging with the gene annotations. Results with 
HD data are depicted in Manhattan plots in Figure 
1 for CCR, DPR, and HCR, and in Figure 2 for the 
trivariate analysis.

Similar significant regions were identified in previ-
ous studies related to fertility. Peters et al. (2013) 
identified a region on BTA8 (between 0.35 and 0.97 
Mb) related to heifer pregnancy rate. Significant as-
sociations were identified herein for CCR using MD 
markers on BTA8 at approximately 0.6 and 0.8 Mb. 

Table 2. Heritability (on diagonal in bold), genetic correlation (above 
diagonal), and phenotypic correlation (below diagonal) of daughter 
pregnancy rate (DPR), cow conception rate (CCR), and heifer 
conception rate (HCR) as provided by VanRaden and Cole (2014)

 DPR CCR HCR

DPR 0.04 0.87 0.41
CCR 0.70 0.02 0.54
HCR 0.10 0.45 0.01
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Regions on BTA10 (at approximately 25 and 48 Mb) 
have previously been associated with fertilization rate 
(Huang et al., 2010). Similar regions were identified in 
CCR, DPR, and trivariate analyses using MD markers 
(Supplemental Tables S1, S2, and S4; http://dx.doi.
org/10.3168/jds.2015-10444). Kühn et al. (2003) also 
found a region on BTA10 between 34 and 57 Mb as-

sociated with paternal effect of nonreturn rate at 90 
d. A region on BTA10 associated with CCR between 
49 and 50 Mb was identified herein using MD mark-
ers. A second region on BTA10 was identified between 
84 and 92 Mb associated with days from first to last 
insemination in cows (Höglund et al., 2009), which cor-
responded to regions found in analyses with MD mark-

Figure 1. Manhattan plots of genome-wide association analysis results of cow conception rate (a), daughter pregnancy rate (b), and heifer 
conception rate (c) using high-density bull genotypes. Color version available online.



Journal of Dairy Science Vol. 99 No. 8, 2016

GENOME-WIDE ASSOCIATION STUDIES AND NETWORK ANALYSIS OF FERTILITY 6425

ers for HCR (at 86 Mb) and the trivariate analysis 
(at 84 Mb). Regions identified in the DPR, HCR, and 
trivariate analyses (with both MD and HD markers) 
on BTA3 corresponded to regions identified by Hawken 
and Zhang (2012) on BTA3 at 112.3 Mb associated 
with occurrence of first postpartum ovulation before 
weaning in the first rebreeding period. This region 
has also been shown to be associated with first-service 
conception (Peters et al., 2013). Cole et al. (2011) also 
identified a region of BTA3 at approximately 90 Mb 
associated with DPR. The study by Cole et al. (2011) 
analyzed a smaller number of cows, 1,555 of which over-
lapped with this study. A similar region was identified 
in the CCR and DPR analyses at MD, as well as the 
trivariate analyses at both density levels. Sahana et 
al. (2010) identified a region at approximately 87 Mb 
on BTA3 associated with the interval from calving to 
first insemination. This region was also identified in 
the analysis of HCR with HD markers. A region on 
BTA13 at approximately 68 Mb was also found to be 
associated with a fertility index (Sahana et al., 2010). 
A similar region at approximately 67 Mb was found in 
both the DPR and HCR analyses using MD markers. 
Hawken and Zhang (2012) identified a significant re-
gion on BTA15 between 31 and 38 Mb associated with 
age at first observed corpus luteum. An association in 
this region was also identified herein for DPR and HCR 
with MD markers, as well as for CCR with HD mark-
ers. Last, on BTA18, Ashwell et al. (2004) identified a 
region between 8 and 16 Mb associated with pregnancy 
rate. This corresponds to a region at approximately 14 
Mb associated with HCR using HD markers.

Several markers were found at both levels of chip 
density, as expected. The number of significant markers 
found in common for each trait between chip densities 
was 6, 8, 8, and 7 markers for CCR, DPR, HCR, and the 
trivariate analysis, respectively. Among genes found in 
common between the chip densities, several have been 
previously documented to affect reproductive traits. 
For DPR, both chips contained a peak near TRPV1 
on chromosome 19. The protein that this gene encodes 
has been found predominantly in sperm tails, the apical 
region of the acrosome, and the postacrosomal region 
in the sperm head. It has also been identified in bull 
spermatozoa (Gervasi et al., 2011). Several genes in the 
HCR analysis were associated with peaks at both chip 
densities including TRAF3IP1, SMARCA2, and CHFR. 
Mutations in TRAF3IP1 have been shown previously 
to result in defects in ciliogenesis and embryonic de-
velopment (Berbari et al., 2011). The SMARCA2 gene 
has been shown to have a role in early embryogenesis 
(Peddinti et al., 2010), as well as in chromatin remodel-
ing in bovine and human oocytes (Adjaye et al., 2007; 
Peddinti et al., 2010). Finally, CHFR has been shown 
to be involved in the MSX1 pathway, which delays pre-
implantation development in bovine embryos in vitro 
(Tesfaye et al., 2010).

An additional way to identify genes that may have 
a role in fertility is to find those that overlap between 
univariate and trivariate analyses for a given popula-
tion and chip density. In the bull population, 3 genes 
(SLC35A5, GALNTL6, APPL1) were identified in 
both the univariate analysis of CCR and the trivariate 
analysis at HD density. The GALNTL6 gene has been 

Figure 2. Manhattan plot of genome-wide association analysis results of cow conception rate, daughter pregnancy rate, and heifer conception 
rate in a trivariate analysis using high-density bull genotypes. Color version available online.
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implicated as a candidate gene associated with cull cow 
carcass weights in Holstein Friesian cattle (Doran et al., 
2014), but it has also been identified in humans as a 
potential gene involved in miscarriages (Kooper et al., 
2014). Expression of APPL1 has been previously found 
in the bovine ovary, large and small follicles, corpus 
luteum, cumulus cells, granulosa cells, follicular fluid, 
and the oocyte (Maillard et al., 2010). Analyses of DPR 
in the bull population with HD genotypes also resulted 
in a peak associated with GALNTL6. Additional genes 
that overlapped between DPR and trivariate analyses 
included ESPNL, FAM132B, ILKAP, LINGO2, and an 
uncharacterized protein on BTA9. Of particular interest 
to fertility, ILKAP is a C1-angiogenesis protein. Angio-
genesis is typically limited to specific normal adult cells 
including the placenta, ovary, and endometrium (Red-
mer et al., 1988). Last, comparing overlap between the 
trivariate analysis with HCR, we found several genes 
that were in common with those found in the DPR 
analysis, including ESPNL, ILKAP, GALNTL6, and 
LINGO2. Another gene that overlapped with HCR with 
particular reproductive interest was SMARCA2, which 
was described above. Additional overlapping genes with 
HCR included LRRN2, ERCC8, and LOC506670.

Cows

Association analyses were performed for the cow 
population. Thresholds for MD data were increased to 
a –log(P-value) of 4.0 in the cow population to identify 
a reasonable number of markers to investigate further. 
The threshold for the HD data set was also increased 
to –log(P-value) of 5.0 for the cow population. There 
were 75 (0.08), 33 (0.18), 37 (0.16), and 83 (0.07) 
markers (FDR) from the MD marker panel exceeding 
the threshold for the CCR, DPR, HCR, and trivariate 
analyses, respectively. In the HD analysis, there were 
37 (0.08), 48 (0.06), 68 (0.05), and 116 (0.03) markers 
(FDR) for each trait (DPR, CCR, HCR, and trivariate 
analysis, respectively). Results from HD GWAS in the 
cow populations are shown in Manhattan plots in Fig-
ures 3 and 4. Tables listing the markers exceeding the 
threshold and their closest gene are included as supple-
mentary materials (Supplemental Tables S5–S8 and 
S17–S20; http://dx.doi.org/10.3168/jds.2015-10444).

As in the bull analyses, significant associations were 
found within the cow analyses that corresponded to pre-
vious reports in literature. Berry et al. (2012) identified 
an association with postpartum interval to commence-
ment of luteal activity on BTA2 at approximately 134 
Mb. The analysis herein with MD markers for HCR 
also identified this region of BTA2. A region on BTA3 
was identified in the CCR analysis using MD markers, 

corresponding to a region identified by Hawken and 
Zhang (2012) associated with occurrence of first post-
partum ovulation before weaning in the first rebreeding 
period. Peters et al. (2013) identified an association 
on BTA3 at approximately 96 Mb with first service 
conception. This is near an association with HCR iden-
tified herein with MD markers (Supplemental Table S7; 
http://dx.doi.org/10.3168/jds.2015-10444). Trivariate 
analyses and DPR analyses at both marker densities 
identified a region at approximately 88 to 90 Mb on 
BTA6 corresponding to a region at approximately 89 
Mb previously found to be associated with interval 
from calving to first insemination (Sahana et al., 2010). 
In CCR analyses with MD markers, regions were iden-
tified on BTA8 and BTA13 at approximately 25 and 
80 Mb, respectively. This region on BTA8 is close to 
regions associated with first service conception (Peters 
et al., 2013) and fertilization rate (Huang et al., 2010). 
The region on BTA13 is close to regions associated with 
fertilization rate (Huang et al., 2010) as well as heifer 
pregnancy (Peters et al., 2013). Previous research by 
Cochran et al. (2013) identified an association between 
DPR and HCR with the CACNA1D gene. In our analy-
sis of DPR using HD markers in the cow population, 
we identified the same gene but with a different subunit 
(1E). On BTA7, a region at approximately 15.4 Mb has 
been previously associated with productive life, somatic 
cell score, and DPR (Cole et al., 2011). Analyses with 
MD markers of CCR and HCR, as well as the trivariate 
analysis, identified a similar location on BTA7. Ashwell 
et al. (2004) identified a region at approximately 70 
Mb on BTA16 associated with pregnancy rate. This 
region was also identified in the trivariate analysis, as 
well as CCR and DPR, using HD markers. Kühn et al. 
(2003) identified putative QTL on BTA18 in the re-
gion of 62 to 65 Mb associated with both the maternal 
and paternal effects of nonreturn rate at 90 d. A large 
block on BTA18 ranging from approximately 57 to 62 
Mb was found to be associated in analyses using HD 
markers of DPR and HCR, as well as the trivariate 
analysis. Additional research has identified associations 
with fertility traits on BTA18 (Sahana et al., 2010). 
Ashwell et al. (2004) also identified a region associated 
with fertility traits on BTA18; however, it was in the 
region spanning 38 to 43 Mb. Analyses of DPR, HCR, 
and trivariate herein identified regions slightly beyond 
this at 44 to 46 Mb.

The number of significant markers in common be-
tween the MD and HD analyses ranged from 1 for CCR, 
9 for HCR, and 7 in the trivariate analyses. Analyses 
at both chip densities for CCR identified a peak near 
the AFF1 gene located on chromosome 6. In mice, Aff1 
is expressed in the kidney, brain, lung, liver, spleen, 
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skeletal muscle, and testis. Specific gonadal studies 
identified Aff1 expression in the ovary, epididymis, and 
testis of mice (Alves et al., 2011). In cattle, Fortes et 
al. (2011) identified AFF1 as a significant transcrip-
tion factor in regulatory gene networks underlying 
puberty in beef cattle. The DPR analyses identified a 
peak near the TP53BP1 gene on chromosome 21. This 

gene, which encodes a key p53 binding protein, was also 
included in the association matrix for puberty of beef 
cattle (Fortes et al., 2010). The p53 family of proteins 
have roles not only in cancer and development but also 
in maternal reproduction (Levine et al., 2011; Hu et al., 
2007). A gene of interest identified in the HCR analy-
ses was SIGLEC12 (LOC618463), which has previously 

Figure 3. Manhattan plots of genome-wide association analysis results of cow conception rate (a), daughter pregnancy rate (b), and heifer 
conception rate (c) using high-density cow genotypes. Color version available online.
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been identified as an interesting target gene for calving 
traits (Cole et al., 2009).

More genes overlapped when comparing HD results in 
the cow population between the trivariate analysis and 
each univariate analysis. For CCR, overlapping genes 
with implications in fertility included AFF1, CCL19, 
KIF27, LAMC3, SMYD2, and LRRC4B. Both AFF1 
and LRRC4B were also identified in the cow popula-
tion using MD in CCR and HCR, respectively. Guerin 
et al. (2011) has suggested that CCL19 plays a role in 
controlling lymphocyte populations that are associated 
with embryo implantation in humans. They found that 
seminal fluid increases expression of CCL19 in uterine 
epithelial cells, which in turn increases circulating regu-
latory T-cells (Guerin et al., 2011).

Bulls and Cows

When the bull and cow populations were combined, a 
threshold of –log(P-value) equal to 3.0 was used for MD 
GWAS and –log(P-value) equal to 4.0 for HD GWAS. 
At this level, 61 (0.98), 57 (0.99), 61 (0.98), and 41 
(0.99) markers (FDR) were identified for CCR, DPR, 
HCR, and trivariate analysis, respectively. In the HD 
GWAS, 154 (0.20), 130 (0.24), 173 (0.18), and 27 (0.99) 
markers (FDR) for CCR, DPR, HCR, and trivariate 
analyses, respectively. Results from HD GWAS in 
the combined bull and cow populations are shown in 
Manhattan plots in Figures 5 and 6. Markers exceed-
ing the threshold and their closest gene are included in 
Supplemental Tables S9 to S12 and S21 to S24 (http://

dx.doi.org/10.3168/jds.2015-10444) for both MD and 
HD analyses.

Overlap was also identified when comparing the 
results from using a combined bull and cow data set 
to results previously reported in the literature. Tri-
variate analysis using HD markers identified a region 
at approximately 129 to 130 Mb on BTA2, which cor-
responded to an association with postpartum interval 
to commencement of luteal activity in the same region 
identified by Berry et al. (2012). The aforementioned 
study by Cole et al. (2011) identified a region on 
BTA7 at 15.4 Mb associated with DPR, productive 
life, and SCS. This corresponded to regions identified 
in the trivariate analysis with MD markers and HCR 
analysis with HD markers in the combined bull and cow 
data set. Additionally, a region associated with DPR 
on BTA3 aligned with a region identified in the HCR 
analysis with MD markers. A region identified using 
MD markers on BTA8 at approximately 71 Mb associ-
ated with DPR corresponded to a region identified by 
Berry et al. (2012) associated with days from calving 
to first observed heat. Using HD markers, trivariate 
and CCR analyses identified a region on BTA10 at ap-
proximately 8 Mb. A similar region spanning 8 to 15 
Mb was identified previously as being associated with 
fertility treatments in third parity. Fertility treatments 
included hormonal reproductive disorders, ovarian cyst 
treatments, and infective reproductive disorders (Hö-
glund et al., 2009). Corresponding regions were also 
identified on BTA22 with fertility treatment in first-
parity animals in the region of 57 Mb (Höglund et al., 

Figure 4. Manhattan plot of genome-wide association analysis results of cow conception rate, daughter pregnancy rate, and heifer conception 
rate in a trivariate analysis using high-density cow genotypes. Color version available online.
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2009). All analyses herein with HD markers identified 
associations in a similar region of BTA22 spanning 54 
to 57 Mb. Huang et al. (2010) reported associations 
with fertilization rate on BTA10 (at approximately 25 
Mb) and BTA29 (at approximately 45 Mb). Similar 
regions were identified herein using MD markers for 
DPR (see Supplemental Table S10; http://dx.doi.

org/10.3168/jds.2015-10444). Using HD markers in the 
trivariate analysis, an association identified on BTA2 
corresponded to a region identified by Huang et al. 
(2010) associated with fertilization rate. Sahana et al. 
(2010) cited significant fertility-related associations on 
BTA10 at 40.7, 52.7, and 93 Mb. Trivariate and DPR 
analyses using MD markers identified corresponding 

Figure 5. Manhattan plots of genome-wide association analysis results of cow conception rate (a), daughter pregnancy rate (b), and heifer 
conception rate (c) using high-density bull and cow genotypes. Color version available online.
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associations in the region of 52 Mb on BTA10. Kühn 
et al. (2003) also identified a similar region on BTA10 
spanning 34 to 57 Mb associated with paternal effect 
of nonreturn rate at 90 d. In addition to associations 
with the trivariate and DPR analyses mentioned above, 
this region also includes an association with HCR using 
MD markers at approximately 37 to 38 Mb. A region of 
BTA18 spanning 62 to 65 Mb has been previously as-
sociated with both the maternal and paternal effects of 
nonreturn rate at 90 d (Kühn et al., 2003). Correspond-
ing regions on BTA18 were found to be associated with 
DPR (at 62 Mb) and HCR (at 64 Mb) using MD mark-
ers. The APBB1 gene has previously been identified as 
being associated with DPR and HCR (Cochran et al., 
2013). Using MD markers for the analysis of DPR, we 
identified an association with APPB2. Similar to what 
was found in the cow analysis, we identified CACNA1A 
as associated with HCR, whereas Cochran et al. (2013) 
identified an association of CACNA1D with DPR and 
HCR. Last, MRGPRF was associated with CCR using 
HD markers and was also previously associated with 
DPR (Cochran et al., 2013).

There were no significant markers in common be-
tween the 2 marker densities in the combined popula-
tion; however, several genes were identified in both the 
trivariate analysis and univariate analysis for CCR and 
DPR with HD data. No genes overlapped between HCR 
and the trivariate analysis. Genes associated with large 
peaks in both the trivariate analysis and CCR analysis 
that have previous implications in reproduction includ-
ed PDE8B and EIF3M. The PDE8B gene is part of the 
phosphodiesterase family and is expressed in cumulus 

cells, granulosa cells from small follicles, and cumulus-
oocyte complexes. It has also been identified in rat 
brain, mouse ovary, and bovine testis (Sasseville et al., 
2009). Zeng et al. (2013) showed that embryos lacking 
functional EIF3M died at the peri-implantation stage, 
implying that murine EIF3M is essential for embryonic 
development. Comparing the results from DPR with 
the trivariate analysis, the only gene that overlapped 
was MAS1. The MAS1 gene is a proto-oncogene, G 
protein-coupled receptor that has been implicated to 
play a role in regulation of the ovulatory process in 
cattle (Tonellotto dos Santos et al., 2012).

Correlation Network Analyses

Results from merging significant markers with their 
closest gene are included as supplementary materials 
for each reference population, density, and trait (Sup-
plemental Tables S1 to S24; http://dx.doi.org/10.3168/
jds.2015-10444).

Bulls

The largest network identified with the PCIT al-
gorithm using HD bull data incorporated 24 genes or 
markers and is shown in Figure 7. Among the genes 
in this network, only GALNTL6 was also identified in 
the prior GWAS analyses. Genes included in the net-
work that have had prior citations involving reproduc-
tive traits include CUX1, EPSTI1, ESRRA, KIF5B, 
PDE5A, and WNT7A. Forde and Lonergan (2012) 
found EPSTI1 to be differentially expressed as part 

Figure 6. Manhattan plot of genome-wide association analysis results of cow conception rate, daughter pregnancy rate, and heifer conception 
rate in a trivariate analysis using high-density bull and cow genotypes. Color version available online.
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of the early endometrial response to a conceptus. The 
WNT7A gene is involved in cell proliferation (Robinson 
et al., 2008), with reports of significant effects on re-
productive traits. Complete deletion of WNT7A results 
in abnormal Müllerian duct patterning, specification, 
and cell fate in a developing fetus. Mice that carry mu-
tated WNT7A lacked endometrial glands, but all other 
uterine cell types appeared normal. It also appears that 
mutations in WNT7A interfere with blastocyst implan-
tation (Dunlap et al., 2011).

Using the genes selected by the PCIT algorithm, 
GO enrichment identified processes involved in steroid 
metabolism (GO:0019218, GO:0030301, GO:0015918, 
GO:0008202, GO:0045940, GO:0050810). Changes in 
reproduction of dairy cattle have previously been associ-
ated with elevated steroid metabolism (Wiltbank et al., 
2006). Additional related processes that were identified 
included regulation of hormone levels (GO:0010817) 
and in utero embryo development (GO:0001701).

Cows

The largest network identified by the PCIT algo-
rithm in the cow population using HD data involved 
13 genes or markers, as shown in Figure 8. None of 
these genes were previously identified by the GWAS 
analysis discussed above; however, several have been 
implicated in reproductive processes. Two genes with 
the greatest amount of literature supporting their role 
in reproduction were DAZL and BAX. The DAZL gene 
has been implicated to have an important role in game-
togenesis, with deletions or mutations resulting in ste-
rility in vertebrates (Zhang et al., 2008). It is believed 
to be important for the transcriptional regulation of 
mRNA expression (Zhang et al., 2008). The BAX gene 
is interesting, as it seems to have different functions in 
males and females. In females, BAX has been identi-
fied as a pro-apoptotic gene (Lazzari et al., 2011) that, 
when deleted, results in increased oocyte and follicle 
numbers in mice (Greenfeld et al., 2007). In males, 
however, it has been shown that the absence of BAX 
results in infertility. It is hypothesized that the balance 
between apoptotic and anti-apoptotic factors plays an 
important role in normal spermatogenesis (Matzuk and 
Lamb, 2002).

From genes identified with the PCIT algorithm in 
the cow data set, GO enrichment identified several pro-
cesses related to cell death and apoptosis (GO:0042981, 
GO:0043067, GO:0010941, GO:0043068, GO:0010942). 
Associations with cell death and apoptosis as related 
to fertility traits may be associated with embryo sur-
vival. Additionally, several processes involving ion 
binding were identified (GO:0043167, GO:0043169, 
GO:0046872).

Bulls and Cows

The combined data set of bulls and cows produced a 
network including 13 genes and markers using HD data 
as shown in Figure 9. Several of the identified genes 
were not identified in the GWAS analysis; however, 
they did have previous citations in the literature related 
to reproductive function. For example, the NOS2 gene 
is a nitric oxide synthase and has been identified in 

Figure 7. Largest network identified using partial correlation and 
information theory algorithm with high-density marker fertility results 
in the bull population. ABLIM3 = actin binding LIM protein fam-
ily, member 3; TMEM50B = transmembrane protein 50B; CCDC85A 
= coiled-coil domain containing 85A; CUX1 = cut-like homeobox 1; 
LOC101908547 = olfactory receptor 4D2-like; PDE5A = phosphodi-
esterase 5A; ESRRA = estrogen related receptor alpha; ELF2 = E74-
like factor 2; GALNTL6 = polypeptide N-acetylgalactosaminyltransfe
rase-like 6; KIF5B = kinensin family member 5B; MFAP3L = micro-
fibrillar associated protein 3 like; CDK6 = cyclin-dependent kinase 6; 
TCF12 = transcription factor 12; METTL6 = methyltransferase like 
6; NHSL1 = NHS like 1; WNT7A = wingless-type MMTV integration 
site family member 7A; TTC21B = tetratricopeptide repeat domain 
21B; EPSTI1 = epithelial stromal interaction 1; MIPEP = mitochon-
drial intermediate peptidase.

Figure 8. Largest network identified using partial correlation and 
information theory algorithm with high-density marker fertility results 
in the cow population. FICD = FIC domain containing; DAZL = 
deleted in azoospermia-like; TYRP1 = tyrosinase-related protein 1; 
EPB41L1 = erythrocyte membrane protein band 4.1-like 1; APBB2 = 
amyloid beta precursor protein binding family B member 2; KCNIP4 
= Kv channel interacting protein 4; ZMYM6NB = ZMYM6 neighbor; 
RNF135 = ring finger protein 135; BAX = BCL2-associated X protein.
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human, bovine, and rat oviducts. It was hypothesized 
that regulation of NOS at estrus in the isthmus re-
sults in increased oviduct motility by acting on smooth 
muscle activity (Ulbrich et al., 2006). It has also been 
postulated that nitric oxide may contribute to survival 
of granulosa cells (Zamberlam et al., 2011).

Gene ontology analysis with the genes identified 
by the PCIT algorithm in the combined bull and cow 
population did not result in many processes that could 
clearly be associated with fertility. Several processes 
involved with wound healing were identified; how-
ever, their relationship with fertility is not clear (e.g., 
GO:0009611, GO:0042060). Two processes identified 
that were more clearly associated with fertility were 
those related to sexual reproduction (GO:0019953) and 
response to hormone stimulus (GO:0043434).

General Discussion

In addition to identifying genes putatively associated 
with fertility, the analyses performed herein provide in-
sight into several nuances of GWAS. First, we were able 
to discern differences when using a medium-density 
versus high-density genotyping platform. A set of genes 
had large associations with the traits of interest, regard-
less of the chip density used. This implies that some 
association signals are identified irrespective of marker 
density. This also lends support that the analysis is 
identifying regions of the genome that are truly associ-
ated with the traits. Conversely, we observed additional 
genomic regions with the HD panel compared with the 
MD panel. Some analyses with MD markers had very 
high FDR (e.g., bull population, combined bull and 
cow population). Using HD markers resulted in lower 
FDR in all analyses. High FDR in analyses with MD 
markers may be partly the result of association strength 
with these complex traits. It has previously been seen 
that increasing the density of marker panels leads to 
increased power and resolution to detect significant loci 
(Khatkar et al., 2008; Spencer et al., 2009).

Most GWAS results are reported on a univariate 
basis, but multivariate analysis can potentially identify 
additional significant associations. Multivariate GWAS 
studies can achieve higher statistical power compared 
with univariate GWAS (Korol et al., 2001; Bolormaa et 
al., 2010). Multivariate GWAS may also aid in identify-
ing genes that are involved in overarching biological 
processes affecting fertility. Overlap among identified 
genes observed between univariate and trivariate analy-
ses herein may indicate genes that are involved in fertil-
ity processes in general. Differences between traits are 
also to be expected, however, as different aspects of fer-
tility are represented (e.g., heifer conception versus cow 
conception). A better understanding of the biological 

mechanisms controlling fertility will allow more precise 
and rapid improvement of cattle fertility to be made.

In contrast, little overlap of genes could be identified 
when comparing results across reference populations. 
Genes identified in analyses using data only from bulls 
were very rarely also identified as significant in analyses 
using only cow data. This may be the result of dif-
ferent power levels due to the sample size difference 
between bull and cow populations. It may also be the 
result of differences in reliability between the bull and 
cow populations. Despite having the same reliability 
constraints in place, the cow population had a larger 
spread of reliabilities, which may have introduced ad-
ditional noise.

Finally, network analyses using the PCIT algorithm 
bring additional GWAS implications to the forefront. 
The PCIT algorithm allows the genetic dissection of 
complex traits and the development of networks de-
rived based solely on the data itself. It also allows us to 
be more lenient in deeming markers as significant. This 
should prove especially beneficial for low-heritability 
traits such as fertility, where the prevailing assump-
tion is that many genes, each with a small effect, af-
fect the trait. In support of this, the PCIT network 
analyses performed herein identified several genes that 
were not identified as significant in the ordinary GWAS 
analysis. Many of these genes have been implicated in 
reproductive functions. The gene networks presented 
include fewer genes than those previously presented in 
literature (e.g., Fortes et al., 2010). It should be noted 
that the number of phenotypes used herein for PCIT 
analysis is fewer than used in previous research, possi-

Figure 9. Largest network identified using partial correlation and 
information theory algorithms with high-density marker fertility re-
sults in the combined bull and cow population. SLC7A11 = solute car-
rier family 7 (anionic amino acid transporter light chain, xc-system); 
IL28RA = interferon, lambda receptor 1; TNPO1 = transportin 1; 
EMID2 = collagen type XXVI alpha 1; ABCD3 = ATP binding cas-
sette subfamily D member 3; KCNIP4 = Kv channel interacting pro-
tein 4; CCL5 = chemokine (C-C motif) ligand 5; ZMAT4 = zinc finger, 
matrin-type 4; AKR7A3 = aflatoxin B1 aldehyde reductase member 3; 
EXD1 = exonuclease 3’-5’ domain containing 1.
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bly resulting in smaller networks. The smaller resulting 
networks may also be the result of using too stringent 
a selection threshold for these traits. In developing a 
PCIT network, the significance threshold here is only 
one method to determine if genes should be included 
for further analysis. The number of genes included in 
a network can also depend on chip density and quality 
of the annotation of SNP to the genome (Reverter and 
Fortes, 2013).

CONCLUSIONS

The most significant markers from the present GWAS 
were investigated to identify genes putatively associ-
ated with fertility traits (specifically, CCR, DPR, and 
HCR). We also explored differences in results based 
on chip density, reference population, and dependent 
variable(s). The PCIT algorithm was used to develop 
gene interaction networks that identified several genes 
not previously identified with the typical GWAS analy-
sis. The results obtained will aid in further dissecting 
the complex biology underlying fertility traits in dairy 
cattle.
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