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ABSTRACT

The objective of this study was to compare genetic 
trends from single-step genomic BLUP (ssGBLUP) 
and traditional BLUP models for milk production 
traits of US Holsteins. Phenotypes were 305-d milk, 
fat, and protein yields from 21,527,040 cows recorded 
between January 1990 and August 2015. The pedigree 
file included 29,651,623 animals and was limited to 3 
generations back from recorded or genotyped animals. 
Genotypes for 764,029 animals were used, and analyses 
were by a 3-trait repeatability model as used in the 
US official genetic evaluation. Unknown-parent groups 
were incorporated into the inverse of a relationship 
matrix (H−1 in ssGBLUP and A−1 in BLUP) with 
the QP transformation. For ssGBLUP, 18,359 geno-
typed animals were randomly chosen as core animals 
to calculate the inverse of the genomic relationship 
matrix with the APY algorithm. Computations took 
6.5 h and 1.4 GB of memory for BLUP, and 13 h and 
115 GB of memory for ssGBLUP. For genotyped sires 
with at least 10 daughters, the average genetic levels 
for predicted transmitting ability (PTA) and genomic 
PTA were similar up to 2008, with a higher level for 
ssGBLUP later (approximately by 36 kg for milk, 2.1 
kg for fat, and 1.1 kg for protein for bulls born in 2010). 
For genotyped cows, the average genetic levels were 
similar up to 2006, with a higher level for ssGBLUP 
(approximately by 91 kg for milk, 3.6 kg for fat, and 
2.7 kg for protein for cows born in 2012). For all cows, 
the average levels were slightly higher for ssGBLUP, 
with much smaller differences than for genotyped cows. 
Trends for BLUP indicate bias due to genomic prese-
lection for genotyped sires and cows. For official evalu-
ations released in December 2016, traditional PTA had 
the same trend as multiple-step genomic PTA for both 
genotyped bulls and cows except for the youngest bulls, 
who had traditional PTA slightly lower than genomic 

PTA. For genotyped bulls born in recent years, genetic 
gain for official traditional and genomic evaluations was 
similar in contrast to ssGBLUP and BLUP differences. 
Official PTA for cows were adjusted so that the Men-
delian sampling variance was comparable with that for 
bulls, and those adjustments likely removed bias due to 
genomic preselection from traditional PTA, especially 
for genotyped cows. The ssGBLUP method seems to 
account partially for that bias and is computationally 
suitable for national evaluations.
Key words: genomic evaluation, predicted transmitting 
ability, single-step method, bias

INTRODUCTION

Genomic selection has been rapidly adopted by the 
US dairy industry since genomic PTA (GPTA) were 
officially published for young bulls in 2009. Bulls are 
selected based on GPTA before they have a traditional 
PTA (tradPTA) based on daughter performance re-
cords. Genomic selection has had a positive effect on 
recent genetic gain because of a shortened generation 
interval from intensive use of young bulls (García-Ruiz 
et al., 2016; Wiggans et al., 2017). More than 50% of 
all AI matings used genotyped young bulls in 2012 
(Hutchison et al., 2014), and this percentage increased 
to 67% in 2016 (George R. Wiggans, Council on Dairy 
Cattle Breeding, Bowie, MD, personal communication).

One concern in current genomic selection is the un-
derestimation of tradPTA for young bulls when genom-
ic preselection is not accounted for in the traditional 
genetic evaluation (Patry and Ducrocq, 2011a,b). A 
biased tradPTA could lead to inaccurate GPTA be-
cause tradPTA is still needed to construct daughter 
yield deviations (DYD) for the genomic prediction 
(VanRaden et al., 2009). Such bias could propagate to 
other countries through Interbull evaluations based on 
tradPTA (Patry et al., 2013) if the Interbull evalua-
tions are used as an additional source of information for 
national evaluations.

A simple method to reduce the bias is to blend ge-
nomic information with tradPTA (Ducrocq and Liu, 
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2009; Mäntysaari and Strandén, 2010; Patry and Du-
crocq, 2011a). This is implemented as an extra step 
after genomic prediction and needs pseudo-phenotypes 
derived from tradPTA and GPTA. Stoop et al. (2013) 
implemented a multiple-trait approach to blend DYD 
with direct genomic values (DGV; Mäntysaari and 
Strandén, 2010) for Dutch dairy sires. They found that 
the method was easily applied using an animal-model 
framework and could partially account for preselection 
bias. Although the method works, the approach is ad 
hoc, and bias may remain because of biased pseudo-
phenotypes (VanRaden, 2012).

The single-step genomic BLUP approach (ssGB-
LUP) calculates GPTA by combining all available 
phenotypes, pedigree, and genotypes in the same equa-
tions and can possibly account for genomic preselec-
tion (Aguilar et al., 2010; Patry and Ducrocq, 2011b). 
Originally ssGBLUP was considered as a method to 
account for preselection in dairy cattle only with a 
limited number of genotyped animals because of high 
computing cost (VanRaden, 2012). Whereas new algo-
rithms to solve ssGBLUP-based equations were sug-
gested (Fernando et al., 2016a,b; Taskinen et al., 2017), 
recent developments have removed computing limita-
tions of ssGBLUP in dairy cattle with a large number 
of genotyped animals (Koivula et al., 2015; Masuda et 
al., 2016; Misztal, 2016; Strandén et al., 2017).

If the downward bias in the traditional evaluation is 
real, we should observe a higher trend in GPTA from 
ssGBLUP (ssGPTA) than in tradPTA for recent ani-
mals. The main objective of this study was to compare 
trends of ssGPTA and tradPTA for milk production 
traits in the US Holstein population. A secondary 
objective was to compare the recent genetic trend of 
official GPTA using a multi-step method with corre-
sponding tradPTA.

MATERIALS AND METHODS

Data

The initial data set was derived from that used for 
the official US official genomic evaluation of Holsteins 
in August 2015 but with foreign data, other breeds, 
and crossbreds excluded. The initial data set consisted 
of over 80 million 305-d lactation records each for milk, 
fat, and yields from 34 million cows and also included 
70 million pedigreed animals.

We excluded old phenotype and pedigree information 
to reduce computing costs and improve convergence. 
According to Jamrozik and Schaeffer (1991), the use 
of all available data in genetic evaluation is important 
if the interest is in estimation of genetic trends over 
time. In contrast, Mehrabani-Yeganeh et al. (1999) 

showed that use of the last 2 discrete or 4 overlapping 
generations had no significant effect on selection re-
sponse in traditional evaluations in simulated chicken 
populations. Our interest was a possible difference in 
estimated genetic gain after 2009 between traditional 
BLUP and ssGBLUP evaluations. Therefore, only lac-
tation records from cows that calved in or after 1990 
were retained, and pedigree information was limited 
to 3 generations back from cows with lactation re-
cords. The final phenotypic data included 21,527,040 
cows with 50,970,954 records for milk and fat yields 
and 50,319,544 records for protein yield. The pedigree 
data included 29,651,623 animals. Genotypes included 
60,671 SNP markers for 764,029 animals. No SNP chip 
included all those markers; therefore, imputation was 
used to fill in missing marker genotypes (Wiggans et 
al., 2017).

Genetic and Genomic Evaluation

Traditional Evaluation. We calculated tradPTA 
using the 3-trait animal model described by VanRaden 
et al. (2007) and VanRaden et al. (2014). Lactation re-
cords were pre-corrected for calving age, season, milking 
frequency, previous days open, and heterogeneous vari-
ance. The model included fixed effects for management 
group, parity by age, and regressions on inbreeding and 
general heterosis and random effects for breeding value, 
permanent environment, and herd-by-sire interaction. 
Multiple-trait equations and variance components from 
VanRaden et al. (2014) were used for the 3 produc-
tion traits. Inbreeding coefficients were considered in 
the inverse of the numerator relationship matrix (A−1). 
Unknown-parent groups (215) were defined by pedigree 
path, national origin, and birth year.

Mixed-model equations were solved with the BLU-
P90IOD2 program that implemented the precondi-
tioned conjugate gradient (PCG) method with par-
allel processing using OpenMP (Tsuruta et al., 2001; 
OpenMP Architecture Review Board, 2015). Iteration 
finished when the squared ratio of the Euclidean norm 
of residual and right-hand-side vectors:
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where C is the left-hand-side matrix, b is the right-
hand-side vector, and x is the solution in the current 
iteration, which was less than 10−15. The same software 
and convergence criterion were also used in ssGBLUP.

Single-Step Genomic Evaluation. In the single-
step evaluation, the model, genetic parameters, and 
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definition of the unknown-parent group were the same 
as in the traditional evaluation but A−1 was replaced, 
with H−1 defined as
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where GAPY
−1  is the inverse of the genomic relationship 

matrix (G) created with the algorithm of proven and 
young (Misztal et al., 2014; Misztal, 2016) and A22

1−  is 
the inverse of the numerator relationship matrix for 
genotyped animals (Aguilar et al., 2010). The matrix 
GAPY
−1  was calculated based on G blended with A22 as 

0.95G + 0.05A22, then scaled to satisfy AvgDiag(scaled 
G) = AvgDiag(A22) and AvgOff(scaled G) = 
AvgOff(A22), where AvgDiag(X) and AvgOff(X) are 
the averages of diagonal and off-diagonal elements of a 
square matrix X, respectively (Masuda et al., 2016).

To form GAPY
−1 , we randomly chose a core group of 

genotyped animals. A randomly selected set of core 
animals has worked well in earlier analyses (Fragomeni 
et al., 2015; Bradford et al., 2017). Pocrnic et al. (2016) 
found that the choice of core animals did not affect the 
accuracy of genomic evaluation as long as their number 
was equivalent to or larger than the number of largest 
eigenvalues that explained 98% of variation in G. In 
this study, we set the number of core animals to 18,359, 
which was determined with the eigenvalues calculated 
as the squared singular values of the centered marker 
matrix (say, Z) that includes all genotyped animals 
formed as formed by VanRaden (2008). The matrix A22

1−  
was not explicitly created, but a product with a vector 
(e.g., q and A q22

1− ) was indirectly calculated in each 
PCG iteration (Strandén and Mäntysaari, 2014; Masu-
da et al., 2017). Computational details of H−1 and its 
use in the PCG algorithm are described by Masuda et 
al. (2016) and Misztal and Legarra (2017). The un-
known-parent groups were included in ssGBLUP via 
QP transformation (Misztal et al., 2013):
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where A* is A−1 modified with the QP transformation 
(Quaas, 1988) and Q2 is a matrix assigning genotyped 
animals to unknown-parent groups. The use of QP 
transformation in H−1 greatly improves PCG conver-
gence for ssGBLUP (Matilainen et al., 2016) compared 
with using QP transformation for A−1 only. In this 

study, G A QAPY
− −−( )1

22
1

2 and Q G A Q2
1

22
1

2
'

APY
− −−( )  were 

computed and stored as dense matrices in memory be-
fore PCG iteration.

Genetic Trends

For both traditional and single-step genomic evalua-
tions, the genetic base was set to cows with at least 1 
lactation record and born in 2005. The tradPTA and 
ssGPTA were averaged by birth year for a group of 
animals. Two groups were defined: (1) bulls that have 
at least 10 daughters with at least 1 lactation record, 
and (2) cows with at least 1 lactation record. Table 
1 shows the numbers of animals used to estimate the 
genetic trend. Most of the 764,029 genotyped animals 
were younger and were not included in trend estimation 
because they did not have lactation records or daugh-
ters with lactation records.

In a separate analysis, we separately investigated 
the annual change in average official GPTA released in 
December 2016 (msGPTA16) using a multi-step ap-
proach (VanRaden et al., 2009). The reference popula-
tion included 35,445 bulls (including foreign bulls) and 
315,582 cows. The official GPTA was calculated based 
on the traditional PTA (tradPTA16) from the 3-trait 
model with data used in the official routine genomic 
evaluation for December 2016. The official genetic base 
for December 2016 evaluations was cows born in 2010 
rather than 2005.

RESULTS AND DISCUSSION

Computations

Table 2 shows the numbers of iterations, wall-clock 
time per iteration, and total computing time for the 
traditional and single-step evaluations. The single-step 
method required slightly more iterations than the tra-
ditional evaluation. In each PCG round, ssGBLUP av-
eraged 32 s more than for the traditional evaluation; 29 
s were for computations related to GAPY

−1  and A22
1−  and 

the remaining 3 s were related to the additional terms 
for QP transformation. Computations took slightly 
more than 6 h and 1.4 GB of memory for BLUP and 
18.5 h and 115 GB of memory for ssGBLUP.

In previous studies with ssGBLUP in dairy cattle, a 
weight on A22

1− , say ω, was needed to ensure a good 
convergence rate and low inflation of GPTA. An opti-
mal ω varied from 0.7 when inbreeding was considered 
in A22

1−  but ignored in A−1 (Tsuruta et al., 2011; Masuda 
et al., 2016), to 0.9 when inbreeding was included in 
both matrices (Masuda et al., 2015). However, PCG 
required more than 1,000 iterations to converge, and 
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sometimes did not converge. After including inbreeding 
in both matrices and using the QP transformation, the 
model converged well (i.e., only 15% more rounds com-
pared with the traditional evaluation). Similar conclu-
sions were reached by Matilainen et al. (2016).

Genetic Trend for Bulls

Figure 1 shows genetic trends for tradPTA and ss-
GPTA of genotyped and nongenotyped bulls that had 
at least 10 daughters with at least 1 record for milk, fat, 
and protein yields. Evaluations were higher for geno-
typed bulls than for nongenotyped bulls. Dairy bulls 
are almost always genotyped in AI breeding programs 
in the United States (Hutchison et al., 2014). Bulls used 
in natural service had not been genotyped because no 

historical DNA was available, but recently many natu-
ral-service bulls have been genotyped as calves but not 
selected for AI use. Larger genetic gain was observed 
after 2008 for nongenotyped bulls, mainly because 
of indirect selection on parents’ genomic predictions, 
which became officially available in 2009. The genetic 
trends for tradPTA and ssGPTA were almost identical 
for nongenotyped bulls. For genotyped bulls, ssGPTA 
was higher than tradPTA for all traits. The difference 
between genetic trends for tradPTA and ssGPTA was 
constant until 2008, but the 2 trends diverged in 2009 
and 2010. Genetic gain in 2010 was higher for ssGPTA 
by 36 kg for milk, 2.1 kg for fat, and 1.1 kg for protein. 
Possible explanations for this divergence in the young-
est generation are overestimated ssGPTA, underesti-
mated tradPTA, or both.

Table 1. Number of US Holsteins used for genetic trend estimation in the traditional and single-step evaluations

Year of birth

Bulls1

 

Cows2

Genotyped Nongenotyped Genotyped All

2000 437 2,106 261 690,451
2001 507 2,110 392 687,038
2002 581 2,020 461 706,462
2003 522 2,026 693 723,757
2004 1,078 1,437 1,719 767,151
2005 1,252 1,182 2,076 862,803
2006 1,401 1,120 2,703 903,386
2007 1,340 880 3,687 927,492
2008 1,190 720 6,169 985,763
2009 1,209 482 10,502 1,039,972
2010 1,199 159 18,167 1,043,953
2011 0 0 32,982 1,057,566
2012 0 0 47,321 969,331
1Bulls that had at least 10 daughters with at least 1 record.
2Cows with at least 1 record.

Table 2. Wall-clock time per iteration, total computing time, and numbers of iterations for preconditioned 
conjugate gradient (PCG) for traditional and single-step evaluations1

Computation2 Traditional BLUP Single-step BLUP

Preparation   
 Computation of GAPY

−1 N/A 6 h 53 min

 Components of A22
1−  (min) N/A 10 

 Additional matrices in H−1 (min) N/A 10 
 Temporary files (min) 9 28 
 Subtotal in preparation 9 min 7 h 41 min
Iteration phase   
 No. of iterations 402 464
 Time per PCG iteration (s) 51 83
 After processing (min) 12 13
 Subtotal in iterations 5 h 53 min 10 h 54 min
Total 6 h 14 min 18 h 35 min
1Both evaluations used a 3-trait model.
2Steps for GAPY

−1  (inverse of genomic relationship matrix created with the algorithm of proven and young) and 
A22

1−  (inverse of the numerator relationship matrix for genotyped animals) used 20 computing cores and the 
remaining steps used 6 cores on the Intel (Santa Clara, CA) Xeon X7560 2.26 GHz processors. N/A = not 
performed in the traditional BLUP.
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Figure 2 shows genetic trends for msGPTA16 and 
tradPTA16 for genotyped bulls, and Table 3 shows 
the genetic gains for genotyped bulls born from 2008 
through 2010. For all traits, annual genetic gain was 
larger for ssGPTA and smaller for tradPTA compared 
with official gains. Although the official PTA could be 
underestimated because of the effect of preselection, ge-
netic gains for tradPTA were lower than for tradPTA16 
(Table 3) and therefore tradPTA is likely to be biased. 
This underestimation for recent bulls could occur as the 

result of a limited number of daughters with records, 
because almost all daughters had only a first-calving 
record (Nielsen et al., 2015). Under an assumption of 
underestimated official evaluations, the genetic trend 
from ssGPTA was reasonable, but this does not prove 
that ssGPTA is unbiased.

Official genetic trends (Figure 2) did not show the 
divergence observed after 2009 between tradPTA and 
ssGPTA. Genetic trends for both tradPTA16 and 
msGPTA16 were almost the same except in the most 

Figure 1. Genetic trends of traditional and genomic PTA for (A) milk yield, (B) fat yield, and (C) protein yield based on data from August 
2015 official US genomic evaluations for genotyped and nongenotyped Holstein bulls with at least 10 daughters by bull birth year.
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recent year. The multi-step GPTA used for official 
evaluations is an index that combines traditional evalu-
ations and DGV using weights based on individual 
reliability (VanRaden et al., 2009). The GPTA is ex-
pected to have the same average as tradPTA if the 
reliability of tradPTA is high enough. For the youngest 
bulls, tradPTA apparently is underestimated because 
of preselection, and its reliability is relatively low. The 
DGV contributes more in GPTA and partially offsets 
underestimation of tradPTA.

Genetic Trend for Cows

Figure 3 shows genetic trends for tradPTA and 
ssGPTA for genotyped and all cows with at least 1 
record for milk, fat, and protein yields. The tradPTA 
and ssGPTA were higher for genotyped cows than for 
all cows. For all cows, tradPTA and ssGPTA were 
identical or very similar, and genetic gain per year was 
relatively constant with only a small divergence in the 
most recent years (higher ssGPTA).

Figure 2. Genetic trends of December 2016 official US traditional and genomic PTA for (A) milk yield, (B) fat yield, and (C) protein yield 
for genotyped Holstein bulls with at least 10 daughters by bull birth year.
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In contrast to genotyped bulls, genetic trends for 
tradPTA and ssGPTA of genotyped cows started di-
verging around 2007 for all traits before official genomic 
prediction was implemented. The divergence was larger 
after 2008, and the difference between tradPTA and 
ssGPTA was larger than observed for genotyped bulls. 
In 2012, average ssGPTA was higher than tradPTA by 
91 kg for milk, 3.6 kg for fat, and 2.7 kg for protein. 
Genetic trends for official evaluations of cows were al-
most identical for tradPTA16 and msGPTA16 (Figure 
4). Table 3 shows annual genetic gain for genotyped 
cows born from 2009 through 2012. As was found for 
genotyped bulls, estimated gain was slightly higher for 
ssGPTA and smaller for tradPTA compared with of-
ficial evaluations. Annual gain found for tradPTA of 
genotyped cows was close to 0 but did not reflect the 
whole population. Therefore, tradPTA for genotyped 
cows likely is underestimated.

Annual genetic means of genotyped cows increased 
by much less than for the whole population, mainly 
because of lower selection intensity for cows to be 
genotyped. At the beginning of genomic testing in 
2008, cows that were selected for genotyping had first-
lactation yields that were much higher than those of 
their contemporaries (Figure 5), especially for cows 
born from 2000 through 2006. These animals would 
have had a record and were then selected to be geno-
typed to determine their genetic merit more accurately. 
Since 2008, cows that are selected for genotyping have 
become more representative of the entire population as 
the price of genotyping decreased and the technology 
has been adopted by more commercial farms. Fewer 
than 10,000 cows were genotyped per year for cows 
born before 2009 (Table 1).

Genomic testing is now a common tool for preselec-
tion of females in a herd (Wiggans et al., 2017). The 

number of genotyped females born in 2012 was 119,572; 
of those, only 47,321 had lactation records. This pre-
selection will add extra bias to tradPTA for both bulls 
and cows.

Recent Genetic Gain

Table 3 shows recent genetic gain for genotyped bulls 
with at least 10 daughters and for genotyped cows with 
at least 1 lactation. In general, gains were highest for 
ssGBLUP (ssGPTA) and lowest for traditional BLUP 
(tradPTA) with the same data as ssGBLUP. Official 
genomic (msGPTA16) and nongenomic (tradPTA16) 
gains were quite similar and in the middle of those 
for ssGPTA and tradPTA. Differences between the 
genomic evaluations could be the result of methodol-
ogy differences. The ssGBLUP method accounts for 
all information jointly but is sensitive to scaling of 
the genomic matrix; the multi-step method depends 
on several assumptions and tuning parameters (e.g., 
approximation of reliability used for de-regression 
and weights for blending tradPTA16 with DGV and 
polygenic effects). Large differences in gains for non-
genomic evaluations (tradPTA and tradPTA16) are 
likely the result of adjustments used in tradPTA16 
(VanRaden 2005; Wiggans et al., 2011, 2012) and data 
differences. Only data from 1990 through 2015 were 
used to calculate evaluations for this study; official 
evaluations were based on complete data from 1960 
through 2016. The official model adjusts for differ-
ences between past and expected future inbreeding 
depression, which tends to reduce estimated genetic 
trend (VanRaden, 2005).

Future research could consider uncertain pater-
nity as another potential cause of trend biases. Most 
genotyped animals have known parents, whereas the 

Table 3. Annual genetic gain1 for genotyped US Holstein bulls and cows by birth-year period and evaluation 
method

Genotyped  
animals2  Birth years  

Evaluation  
method3

Milk  
(kg)

Fat  
(kg)

Protein  
(kg)

Bulls 2008–2010 ssGPTA 32 1.2 1.7
  tradPTA 19 0.5 1.3
  msGPTA16 23 1.1 1.4
  tradPTA16 23 0.9 1.4
Cows 2009–2012 ssGPTA 29 1.0 1.1
  tradPTA 7 0.2 0.4
  msGPTA16 23 1.0 1.0
  tradPTA16 24 0.9 1.0
1Calculated with a slope coefficient from a linear regression of genetic (genomic) evaluation on year of birth.
2Bulls that had at least 10 daughters with at least 1 record and cows with at least 1 record.
3ssGPTA = genomic PTA with single-step genomic BLUP; tradPTA = traditional PTA with an animal model; 
msGPTA16 = official multi-step genomic PTA released in December 2016; tradPTA16 = traditional PTA 
based on data for December 2016 official evaluations.
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numerator relationship matrix may be incorrect for 
many nongenotyped animals. This could cause dif-
ferences in estimated trends and EBV between these 
groups and for bulls with more or fewer genotyped 
progeny.

We should note that tradPTA16 were used as an 
input for official genomic prediction. Official PTA of 
genotyped cows were adjusted to make variance of Men-
delian sampling comparable with that for traditional 
PTA of bulls and nongenotyped cows (Wiggans et al., 

2012). With that adjustment, the trend for tradPTA 
of genotyped cows was very similar to their trend for 
DGV and therefore, genomic PTA, too. Unadjusted 
PTA may be more comparable with tradPTA from this 
study. For example, annual genetic gain in milk yield 
for genotyped cows with a record and born from 2009 
through 2012 was 24 kg with the adjustments (tradP-
TA16, Table 3) but 16 kg without adjustment (data 
not shown), which was closer to the 7 kg estimated for 
tradPTA (Table 3).

Figure 3. Genetic trends of traditional and genomic PTA for (A) milk yield, (B) fat yield, and (C) protein yield based on data from August 
2015 official US genomic evaluations for genotyped and all Holstein cows with at least 1 record by cow birth year.
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Differences in Trends Between Genotyped  
Males and Females

Differences between ssGPTA and tradPTA for geno-
typed animals born in 2012 (Figures 1 and 3) were 
more than twice as large for cows as for bulls. The 
genotyped cows likely were selected based on genomic 
predictions with positive Mendelian sampling before 
their having lactation records. For traditional BLUP, 
assume that tradPTA = w1PA + w2YD for cows with-

out phenotyped daughters, where PA is parent average, 
YD is yield deviation, and w1 and w2 are appropriate 
weights (VanRaden and Wiggans, 1991). The genomic 
superiority of phenotyped cows is confounded with 
the contemporary-group effect or other nongenetic ef-
fects because the numerator relationship matrix does 
not account for the effect of preselection. Cow YD is 
lower than the genetic base, and underestimated YD 
contributes not only to cow PTA and but also to par-
ent PTA. For ssGBLUP, assume that ssGPTA = w1PA 

Figure 4. Genetic trends of December 2016 official US traditional and genomic PTA (A) milk yield, (B) fat yield, and (C) protein yield for 
Holstein cows with at least 1 record by cow birth year.
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+ w2YD + w3DGV − w4PI, where PI is a subset of 
PA that is doubly counted in DGV and w1 to w4 are 
appropriate weights (VanRaden et al., 2009; Lourenco 
et al., 2015). The DGV can account for unaccounted 
Mendelian sampling for genotyped cows. A young cow 
has fewer observations and phenotyped daughters com-
pared with a bull that has 10 or more daughters with 
records. For such a cow, less phenotypic information 
leads to a smaller weight (w2) on YD, which may not 
correct tradPTA bias. This is a possible reason why we 

observed the larger PTA difference between ssGBLUP 
and BLUP for younger genotyped cows.

For genotyped bulls, ssGPTA = w1PA + w5PC + 
w3DGV − w4PI, where PC is progeny contribution 
from daughters with phenotypes and w5 is a weight. 
With a large number of daughters, PC dominates, and 
most of the BLUP bias for bulls originates from PC (or 
equivalently DYD). A genotyped bull has 2 sources for 
tradPTA bias: its own genomic preselection and the 
underestimated PC because of pre-selected daughters. 

Figure 5. Mean first-lactation yields for (A) milk, (B) fat, and (C) protein by birth year for genotyped (●) and all cows (■).
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Biases in tradPTA can be higher for bulls with a larger 
fraction of genotyped daughters or mates because the 
Mendelian sampling of their phenotyped progeny and 
mates is no longer expected to average 0; however, 
recent estimates of those preselection biases are small 
(VanRaden, 2016). Genomic preselection of the bulls 
themselves can bias traditional animal models because 
young bulls are regressed toward PA and their superior 
Mendelian sampling is ignored (Patry and Ducrocq, 
2011b). In the next few years, trend differences may 
be larger for genotyped bulls. With ssGBLUP, ssGPTA 
seems not to be underestimated. With BLUP, bias due 
to a young bull’s preselection remains in tradPTA even 
though the currently underestimated trend for younger 
bulls approaches the expected trend as the bulls have 
more nongenotyped daughters. That bias accumulates 
in the next generation through continued genomic 
preselection of young bulls. For female genotypes, we 
expect that ssGPTA has the same genetic gain found 
for all cows with records as long as all relevant females 
are included in ssGBLUP. Trend of tradPTA for geno-
typed cows is unpredictable, but at least, the tradPTA 
trend will not catch up the trend of ssGPTA and the 
difference will grow.

For single-step analysis, which used data through 
August 2015, the youngest genotyped bulls were born 
in 2010, and they were not necessarily sons of young 
sires without daughters. The difference between genetic 
trends for ssGPTA and tradPTA might be more obvi-
ous with a recent data set that had more genotyped 
sons of young bulls. In contrast, the data set included 
genotyped cows born in more recent years. This may 
possibly explain the more obvious difference in genetic 
trends for genotyped cows.

Further Discussion

This study suggests that tradPTA for daughter-
proven bulls born in the last generation is likely to 
be underestimated. If so, the downward bias will be 
transferred to DYD or de-regressed proofs and that 
transition will cause problems both nationally and 
internationally. A multi-step genomic evaluation uses 
both unbiased DYD from older animals and underes-
timated DYD from younger animals, and the resulting 
GPTA could also be underestimated for young bulls. In 
validation studies with truncated data, genomic predic-
tions for young bulls tended to be inflated [i.e., the 
slope of the linear regression of DYD or de-regressed 
proof on prediction (i.e., b1) was less than 1 (Koivula et 
al., 2015; Masuda et al., 2016; Wiggans et al., 2017)]. 
The single-step method should fully account for prese-
lection by including the genomic data but may require 

additional adjustments to remove other biases that oc-
cur with real data.

Patry et al. (2013) concluded that pre-selected young 
bulls are penalized in international evaluation and that 
the bias propagates to their relatives and affects their 
international rankings for all traits. Biases due to ge-
nomic preselection in national evaluations should be 
detected and corrected before the evaluations are sent 
to the Interbull Centre (Uppsala, Sweden). Adjustment 
for genomic preselection on the traditional PTA as 
an additional step in genomic prediction is a realistic 
solution of the moment because it does not require 
drastic changes in national and international evaluation 
systems (Stoop et al., 2013). Single-step GBLUP has 
been officially implemented in Belgium and the Czech 
Republic. If ssGPTA (or its de-regressed proof) is sent 
to the Interbull Centre as a traditional evaluation, the 
double counting of genomic information may cause an 
extra bias in ssGPTA because the international evalu-
ations are used as extra information in national evalu-
ations (Šplíchal et al., 2017). Vandenplas and Gengler 
(2012) and Vandenplas et al. (2014, 2017) suggested 
methods to integrate international evaluations into na-
tional ssGPTA. Further research is needed to examine 
the use of such methods for large-scale domestic and 
international data.

Mäntysaari et al. (2017) found DYD biased and 
therefore validations based on DYD biased. They 
found validations based on genomic prediction of cow 
records unbiased. If so, trends based on cows may be 
more informative than those based on bulls. However, 
many countries have excluded cows from their refer-
ence populations or used adjustments to account for 
preferential treatment of elite cows (Wiggans et al., 
2011). Thus, 2 opposite biases may occur: PA that are 
too high because of preferential treatment, and progeny 
that are not credited for being better than PA because 
of genomic preselection. The latter is expected to be 
smaller than that estimated by Patry and Ducrocq 
(2011b) because generations overlap in real data and 
bulls now have many more progeny, which makes their 
evaluations less dependent on assumed PA.

CONCLUSIONS

The ssGBLUP evaluation seems to account for ef-
fects of preselection that are not accounted for by 
traditional BLUP. When applied to national produc-
tion traits, recent differences in genetic trends between 
traditional BLUP and ssGBLUP were larger for cows 
than for bulls. Further studies will determine whether 
ssGBLUP offers benefits to the dairy industry beyond 
those from the current multi-step method.



Journal of Dairy Science Vol. 101 No. 6, 2018

BIAS DUE TO GENOMIC PRESELECTION 5205

ACKNOWLEDGMENTS

The Council of Dairy Cattle Breeding (Bowie, MD) 
provided phenotype, genotype, and pedigree data for 
this study. The authors thank John Cole and Melvin 
Tooker of the Animal Genomics and Improvement Lab-
oratory, Agricultural Research Service, USDA (Belts-
ville, MD) for preparation of the initial data set and 
computing facilities. The authors also thank H. Duane 
Norman of the Council on Dairy Cattle Breeding for 
manuscript review. The authors acknowledge Suzanne 
Hubbard of the Animal Genomics and Improvement 
Laboratory, Agricultural Research Service, USDA 
(Beltsville, MD) for suggestions largely improving the 
final manuscript. This research was primarily supported 
by grants from Holstein Association USA (Brattleboro, 
VT) and USDA’s National Institute of Food and Ag-
riculture (Washington, DC; Agriculture and Food Re-
search Initiative competitive grant 2015-67015-22936). 
P. M. VanRaden was supported by USDA Agricultural 
Research Service appropriated project 1245-31000-101-
00, “Improving Genetic Predictions in Dairy Animals 
Using Phenotypic and Genomic Information.” Helpful 
comments by 2 anonymous reviewers on earlier drafts 
of the manuscript are greatly appreciated.

REFERENCES

Aguilar, I., I. Misztal, D. L. Johnson, A. Legarra, S. Tsuruta, and T. J. 
Lawlor. 2010. Hot topic: A unified approach to utilize phenotypic, 
full pedigree, and genomic information for genetic evaluation of 
Holstein final score. J. Dairy Sci. 93:743–752. https:// doi .org/ 10 
.3168/ jds .2009 -2730.

Bradford, H. L., I. Pocrnić, B. O. Fragomeni, D. A. L. Lourenco, 
and I. Misztal. 2017. Selection of core animals in the Algorithm 
for Proven and Young using a simulation model. J. Anim. Breed. 
Genet. https:// doi .org/ 10 .1111/ jbg .12276. In press.

Ducrocq, V., and Z. Liu. 2009. Combining genomic and classical infor-
mation in national BLUP evaluations. Interbull Bull. 40:172–177.

Fernando, R. L., H. Cheng, and D. J. Garrick. 2016a. An efficient 
exact method to obtain GBLUP and single-step GBLUP when the 
genomic relationship matrix is singular. Genet. Sel. Evol. 48:80.
https:// doi .org/ 10 .1186/ s12711 -016 -0260 -7.

Fernando, R. L., H. Cheng, B. Golden, and D. J. Garrick. 2016b. Com-
putational strategies for alternative single-step Bayesian regres-
sion models with large numbers of genotyped and non-genotyped 
animals. Genet. Sel. Evol. 48:96. https:// doi .org/ 10 .1186/ s12711 
-016 -0273 -2.

Fragomeni, B. O., D. A. L. Lourenco, S. Tsuruta, Y. Masuda, I. Agui-
lar, A. Legarra, T. J. Lawlor, and I. Misztal. 2015. Hot topic: Use 
of genomic recursions in single-step genomic best linear unbiased 
predictor (BLUP) with a large number of genotypes. J. Dairy Sci. 
98:4090–4094. https:// doi .org/ 10 .3168/ jds .2014 -9125.

García-Ruiz, A., J. B. Cole, P. M. VanRaden, G. R. Wiggans, F. J. 
Ruiz-López, and C. P. Van Tassell. 2016. Changes in genetic se-
lection differentials and generation intervals in US Holstein dairy 
cattle as a result of genomic selection. Proc. Natl. Acad. Sci. USA 
113:E3995–E4004. https:// doi .org/ 10 .1073/ pnas .1519061113.

Hutchison, J. L., J. B. Cole, and D. M. Bickhart. 2014. Short com-
munication: Use of young bulls in the United States. J. Dairy Sci. 
97:3213–3220. https:// doi .org/ 10 .3168/ jds .2013 -7525.

Jamrozik, J., and L. R. Schaeffer. 1991. Procedures for updating solu-
tions to animal models as data accumulate. J. Dairy Sci. 74:1993–
2000. https:// doi .org/ 10 .3168/ jds .S0022 -0302(91)78368 -9.

Koivula, M., I. Strandén, J. Pösö, G. P. Aamand, and E. A. Mäntysaa-
ri. 2015. Single-step genomic evaluation using multitrait random 
regression model and test-day data. J. Dairy Sci. 98:2775–2784. 
https:// doi .org/ 10 .3168/ jds .2014 -8975.

Lourenco, D. A. L., B. O. Fragomeni, S. Tsuruta, I. Aguilar, B. Zum-
bach, R. J. Hawken, A. Legarra, and I. Misztal. 2015. Accuracy 
of estimated breeding values for males and females with genomic 
information on males, females, or both: an example on broiler 
chicken. Genet. Sel. Evol. 47:56. https:// doi .org/ 10 .1186/ s12711 
-015 -0137 -1.

Mäntysaari, E., M. Koivula, G. P. Aamand, and I. Strandén. 2017. 
Validation of genomic and genetic evaluations. In 2017 Interbull 
Technical Workshop, February 6–7, 2017, Ljubljana, Slovenia. 
Accessed May 23, 2017. http:// www .interbull .org/ static/ web/ 
Mantysaary .pdf.

Mäntysaari, E. A., and I. Strandén. 2010 Use of bivariate EBV-DGV 
model to combine genomic and conventional breeding value evalu-
ations. In Proceedings of the 9th World Congress on Genetics Ap-
plied to Livestock Production. Leipzig (Germany). Aug. 1–6.

Masuda, Y., I. Misztal, A. Legarra, S. Tsuruta, D. A. L. Lourenco, 
B. O. Fragomeni, and I. Aguilar. 2017. Technical note: Avoiding 
the direct inversion of the numerator relationship matrix for geno-
typed animals in single-step genomic best linear unbiased predic-
tion solved with the preconditioned conjugate gradient. J. Anim. 
Sci. 95:49–52. https:// doi .org/ 10 .2527/ jas .2016 .0699.

Masuda, Y., I. Misztal, S. Tsuruta, A. Legarra, I. Aguilar, D. A. L. 
Lourenco, B. O. Fragomeni, and T. J. Lawlor. 2016. Implementa-
tion of genomic recursions in single-step genomic best linear unbi-
ased predictor for US Holsteins with a large number of genotyped 
animals. J. Dairy Sci. 99:1968–1974. https:// doi .org/ 10 .3168/ jds 
.2015 -10540.

Masuda, Y., I. Misztal, S. Tsuruta, D. A. L. Lourenco, B. O. Fragome-
ni, A. Legarra, I. Aguilar, and T. J. Lawlor. 2015. Single-step ge-
nomic evaluations with 570K genotyped animals in US Holsteins. 
Interbull Bull. 49:85–89.

Matilainen, K., M. Koivula, I. Strandén, G. P. Aamand, and E. A. 
Mäntysaari. 2016. Managing genetic groups in single-step genomic 
evaluations applied on female fertility traits in Nordic Red dairy 
cattle. Interbull Bull. 50:71–75.

Mehrabani-Yeganeh, H., J. P. Gibson, and L. R. Schaeffer. 1999. Us-
ing recent versus complete pedigree data in genetic evaluation of a 
closed nucleus broiler line. Poult. Sci. 78:937–941. https:// doi .org/ 
10 .1093/ ps/ 78 .7 .937.

Misztal, I. 2016. Inexpensive computation of the inverse of the genomic 
relationship matrix in populations with small effective population 
size. Genetics 202:401–409. https:// doi .org/ 10 .1534/ genetics .115 
.182089.

Misztal, I., and A. Legarra. 2017. Invited review: Efficient computa-
tion strategies in genomic selection. Animal 11:731–736. https:// 
doi .org/ 10 .1017/ S1751731116002366.

Misztal, I., A. Legarra, and I. Aguilar. 2014. Using recursion to com-
pute the inverse of the genomic relationship matrix. J. Dairy Sci. 
97:3943–3952. https:// doi .org/ 10 .3168/ jds .2013 -7752.

Misztal, I., Z. G. Vitezica, A. Legarra, I. Aguilar, and A. A. Swan. 
2013. Unknown-parent groups in single-step genomic evaluation. 
J. Anim. Breed. Genet. 130:252–258. https:// doi .org/ 10 .1111/ jbg 
.12025.

Nielsen, U. S., J. Pösö, P. Madsen, E. A. Mäntysaari, J. Pedersen, G. 
Su, and G. P. Aamand. 2015. Effect of genomic pre-selection on 
the stability of EBVs from traditional BLUP procedure for pro-
duction traits–A practical illustration. Presentation at 2015 Inter-
bull Technical Workshop and Industry Meeting, February 24–25, 
2015, Walsrode, Germany. Accessed May 23, 2017. http:// www 
.interbull .org/ static/ web/ 4 _3 _Nielsen .pdf.

OpenMP Architecture Review Board. 2015. OpenMP application pro-
gram interface version 4.5. Accessed Nov. 3, 2017. http:// www 
.openmp .org/ wp -content/ uploads/ openmp -4 .5 .pdf.

https://doi.org/10.3168/jds.2009-2730
https://doi.org/10.3168/jds.2009-2730
https://doi.org/10.1111/jbg.12276
https://doi.org/10.1186/s12711-016-0260-7
https://doi.org/10.1186/s12711-016-0273-2
https://doi.org/10.1186/s12711-016-0273-2
https://doi.org/10.3168/jds.2014-9125
https://doi.org/10.1073/pnas.1519061113
https://doi.org/10.3168/jds.2013-7525
https://doi.org/10.3168/jds.S0022-0302(91)78368-9
https://doi.org/10.3168/jds.2014-8975
https://doi.org/10.1186/s12711-015-0137-1
https://doi.org/10.1186/s12711-015-0137-1
http://www.interbull.org/static/web/Mantysaary.pdf
http://www.interbull.org/static/web/Mantysaary.pdf
https://doi.org/10.2527/jas.2016.0699
https://doi.org/10.3168/jds.2015-10540
https://doi.org/10.3168/jds.2015-10540
https://doi.org/10.1093/ps/78.7.937
https://doi.org/10.1093/ps/78.7.937
https://doi.org/10.1534/genetics.115.182089
https://doi.org/10.1534/genetics.115.182089
https://doi.org/10.1017/S1751731116002366
https://doi.org/10.1017/S1751731116002366
https://doi.org/10.3168/jds.2013-7752
https://doi.org/10.1111/jbg.12025
https://doi.org/10.1111/jbg.12025
http://www.interbull.org/static/web/4_3_Nielsen.pdf
http://www.interbull.org/static/web/4_3_Nielsen.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf


5206 MASUDA ET AL.

Journal of Dairy Science Vol. 101 No. 6, 2018

Patry, C., and V. Ducrocq. 2011a. Accounting for genomic pre-se-
lection in national BLUP evaluations in dairy cattle. Genet. Sel. 
Evol. 43:30. https:// doi .org/ 10 .1186/ 1297 -9686 -43 -30.

Patry, C., and V. Ducrocq. 2011b. Evidence of biases in genetic evalu-
ations due to genomic preselection in dairy cattle. J. Dairy Sci. 
94:1011–1020. https:// doi .org/ 10 .3168/ jds .2010 -3804.

Patry, C., H. Jorjani, and V. Ducrocq. 2013. Effects of a national 
genomic preselection on the international genetic evaluations. J. 
Dairy Sci. 96:3272–3284. https:// doi .org/ 10 .3168/ jds .2011 -4987.

Pocrnic, I., D. A. L. Lourenco, Y. Masuda, A. Legarra, and I. Misztal. 
2016. The dimensionality of genomic information and its effect 
on genomic prediction. Genetics 203:573–581. https:// doi .org/ 10 
.1534/ genetics .116 .187013.

Quaas, R. L. 1988. Additive genetic model with groups and relation-
ships. J. Dairy Sci. 71:1338–1345. https:// doi .org/ 10 .3168/ jds 
.S0022 -0302(88)79691 -5.

Šplíchal, J., J. Bauer, J. Přibyl, and J. Motyčka. 2017. Implanting 
MACE values in national single step genomic evaluation. Presen-
tation at 2017 Interbull Technical Workshop, February 6–7, 2017, 
Ljubljana, Slovenia. Accessed Aug. 18, 2017. http:// www .interbull 
.org/ static/ web/ Splichal .pdf.

Stoop, W. M., H. Eding, M. L. van Pelt, L. C. M. de Haer, and G. de 
Jong. 2013. Using pseudo-observations to combine genomic and 
conventional data in the Dutch-Flemish national evaluation. Inter-
bull Bull. 47:106–110.

Strandén, I., and E. A. Mäntysaari. 2014. Comparison of some equiva-
lent equations to solve single-step GBLUP. In Proceedings of the 
10th World Congress on Genetics Applied to Livestock Produc-
tion. Vancouver (Canada). Aug. 17–22, Commun. 069.

Strandén, I., K. Matilainen, G. P. Aamand, and E. A. Mäntysaari. 
2017. Solving efficiently large single-step genomic best linear un-
biased prediction models. J. Anim. Breed. Genet. 134:264–274. 
https:// doi .org/ 10 .1111/ jbg .12257.

Taskinen, M., E. A. Mäntysaari, and I. Strandén. 2017. Single-step 
SNP-BLUP with on-the-fly imputed genotypes and residual poly-
genic effects. Genet. Sel. Evol. 49:36 https:// doi .org/ 10 .1186/ 
s12711 -017 -0310 -9.

Tsuruta, S., I. Misztal, I. Aguilar, and T. J. Lawlor. 2011. Multi-
ple-trait genomic evaluation of linear type traits using genomic 
and phenotypic data in US Holsteins. J. Dairy Sci. 94:4198–4204. 
https:// doi .org/ 10 .3168/ jds .2011 -4256.

Tsuruta, S., I. Misztal, and I. Stranden. 2001. Use of the precondi-
tioned conjugate gradient algorithm as a generic solver for mixed-
model equations in animal breeding applications. J. Anim. Sci. 
79:1166–1172. https:// doi .org/ 10 .2527/ 2001 .7951166x.

Vandenplas, J., F. G. Colinet, and N. Gengler. 2014. Unified method 
to integrate and blend several, potentially related, sources of infor-
mation for genetic evaluation. Genet. Sel. Evol. 46:59 https:// doi 
.org/ 10 .1186/ s12711 -014 -0059 -3.

Vandenplas, J., and N. Gengler. 2012. Comparison and improvements 
of different Bayesian procedures to integrate external information 
into genetic evaluations. J. Dairy Sci. 95:1513–1526. https:// doi 
.org/ 10 .3168/ jds .2011 -4322.

Vandenplas, J., M. Spehar, K. Potocnik, N. Gengler, and G. Gorjanc. 
2017. National single-step genomic method that integrates multi-
national genomic information. J. Dairy Sci. 100:465–478. https:// 
doi .org/ 10 .3168/ jds .2016 -11733.

VanRaden, P. M. 2005. Inbreeding adjustments and effects on genetic 
trend estimates. Interbull Bull. 33:81–84.

VanRaden, P. M. 2008. Efficient methods to compute genomic pre-
dictions. J. Dairy Sci. 91:4414–4423. https:// doi .org/ 10 .3168/ jds 
.2007 -0980.

VanRaden, P. M. 2012. Avoiding bias from genomic pre-selection in 
converting daughter information across countries. Interbull Bull. 
45:29–33.

VanRaden, P. M. 2016. Practical implications for genetic modeling in 
the genomics era. J. Dairy Sci. 99:2405–2412. https:// doi .org/ 10 
.3168/ jds .2015 -10038.

VanRaden, P. M., M. E. Tooker, J. B. Cole, G. R. Wiggans, and 
J. H. Megonigal Jr.. 2007. Genetic evaluations for mixed-breed 
populations. J. Dairy Sci. 90:2434–2441. https:// doi .org/ 10 .3168/ 
jds .2006 -704.

VanRaden, P. M., M. E. Tooker, J. R. Wright, C. Sun, and J. L. 
Hutchison. 2014. Comparison of single-trait to multi-trait national 
evaluations for yield, health, and fertility. J. Dairy Sci. 97:7952–
7962. https:// doi .org/ 10 .3168/ jds .2014 -8489.

VanRaden, P. M., C. P. Van Tassell, G. R. Wiggans, T. S. Sonstegard, 
R. D. Schnabel, J. F. Taylor, and F. S. Schenkel. 2009. Invited 
review: Reliability of genomic predictions for North American 
Holstein bulls. J. Dairy Sci. 92:16–24. https:// doi .org/ 10 .3168/ jds 
.2008 -1514.

VanRaden, P. M., and G. R. Wiggans. 1991. Derivation, calcula-
tion, and use of national animal model information. J. Dairy Sci. 
74:2737–2746. https:// doi .org/ 10 .3168/ jds .S0022 -0302(91)78453 
-1.

Wiggans, G. R., J. B. Cole, S. M. Hubbard, and T. S. Sonstegard. 
2017. Genomic selection in dairy cattle: The USDA experience. 
Annu. Rev. Anim. Biosci. 5:309–327. https:// doi .org/ 10 .1146/ 
annurev -animal -021815 -111422.

Wiggans, G. R., T. A. Cooper, P. M. VanRaden, and J. B. Cole. 2011. 
Technical note: Adjustment of traditional cow evaluations to im-
prove accuracy of genomic predictions. J. Dairy Sci. 94:6188–6193. 
https:// doi .org/ 10 .3168/ jds .2011 -4481.

Wiggans, G. R., P. M. VanRaden, and T. A. Cooper. 2012. Technical 
note: Adjustment of all cow evaluations for yield traits to be com-
parable with bull evaluations. J. Dairy Sci. 95:3444–3447. https:// 
doi .org/ 10 .3168/ jds .2011 -5000.

https://doi.org/10.1186/1297-9686-43-30
https://doi.org/10.3168/jds.2010-3804
https://doi.org/10.3168/jds.2011-4987
https://doi.org/10.1534/genetics.116.187013
https://doi.org/10.1534/genetics.116.187013
https://doi.org/10.3168/jds.S0022-0302(88)79691-5
https://doi.org/10.3168/jds.S0022-0302(88)79691-5
http://www.interbull.org/static/web/Splichal.pdf
http://www.interbull.org/static/web/Splichal.pdf
https://doi.org/10.1111/jbg.12257
https://doi.org/10.1186/s12711-017-0310-9
https://doi.org/10.1186/s12711-017-0310-9
https://doi.org/10.3168/jds.2011-4256
https://doi.org/10.2527/2001.7951166x
https://doi.org/10.1186/s12711-014-0059-3
https://doi.org/10.1186/s12711-014-0059-3
https://doi.org/10.3168/jds.2011-4322
https://doi.org/10.3168/jds.2011-4322
https://doi.org/10.3168/jds.2016-11733
https://doi.org/10.3168/jds.2016-11733
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3168/jds.2015-10038
https://doi.org/10.3168/jds.2015-10038
https://doi.org/10.3168/jds.2006-704
https://doi.org/10.3168/jds.2006-704
https://doi.org/10.3168/jds.2014-8489
https://doi.org/10.3168/jds.2008-1514
https://doi.org/10.3168/jds.2008-1514
https://doi.org/10.3168/jds.S0022-0302(91)78453-1
https://doi.org/10.3168/jds.S0022-0302(91)78453-1
https://doi.org/10.1146/annurev-animal-021815-111422
https://doi.org/10.1146/annurev-animal-021815-111422
https://doi.org/10.3168/jds.2011-4481
https://doi.org/10.3168/jds.2011-5000
https://doi.org/10.3168/jds.2011-5000

	Differing genetic trend estimates from traditional and genomic evaluations of genotyped animals as evidence of preselection bias in US Holsteins
	INTRODUCTION
	MATERIALS AND METHODS
	Data
	Genetic and Genomic Evaluation
	Genetic Trends

	RESULTS AND DISCUSSION
	Computations
	Genetic Trend for Bulls
	Genetic Trend for Cows
	Recent Genetic Gain
	Differences in Trends Between Genotyped Males and Females
	Further Discussion

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES


