
10012

J. Dairy Sci. 102:10012–10019
https://doi.org/10.3168/jds.2019-16262
© American Dairy Science Association®, 2019.

ABSTRACT

Causal variants inferred from sequence data analysis 
are expected to increase accuracy of genomic selection. 
In this work we evaluated the gain in reliability of ge-
nomic predictions, for stature in US Holsteins, when 
adding selected sequence variants to a pre-existent SNP 
chip. Two prediction methods were tested: de-regressed 
proofs assuming heterogeneous (genomic BLUP; GB-
LUP) residual variances and by single-step GBLUP 
(ssGBLUP) using actual phenotypes. Phenotypic data 
included 3,999,631 records for stature on 3,027,304 Hol-
stein cows. Genotypes on 54,087 SNP markers (54k) 
were available for 26,877 bulls. Additionally, 16,648 
selected sequence variants were combined with the 
54k markers, for a total of 70,735 (70k) markers. In all 
methods, SNP in the genomic relationship matrix (G) 
were unweighted or weighted iteratively, with weights 
derived either by SNP effects squared or by a nonlinear 
method that resembles BayesA (nonlinear A). Reliabili-
ty of genomic predictions were obtained by cross valida-
tion. With unweighted G derived from 54k markers, the 
reliabilities (× 100) were 72.4 for GBLUP and 75.3 for 
ssGBLUP. With unweighted G derived from 70k mark-
ers, the reliabilities were 73.4 and 76.0, respectively. 
Weighting by nonlinear A changed reliabilities to 73.3, 
and 75.9, respectively. Addition of selected sequence 
variants had a small effect on reliabilities. Weighting 
by quadratic functions reduced reliabilities. Weighting 
by nonlinear A increased reliabilities for GBLUP but 
had only a small effect in ssGBLUP. Reliabilities for 
direct genomic values extracted from ssGBLUP using 
unweighted G with 54k were higher than reliabilities by 
any GBLUP. Thus, ssGBLUP seems to capture more 

information than GBLUP and there is less room for 
extra reliability. Improvements in GBLUP may be be-
cause the weights in G change the covariance structure, 
which can explain a proportion of the variance that is 
accounted for when a heterogeneous residual variance is 
assumed by considering a different number of daughters 
per bull.
Key words: causative variant, BayesA, genomic 
prediction, sequence data

INTRODUCTION

Genomic selection uses dense SNP, not genes or QTL 
per se. An increase of up to 4 percentage points in 
reliability, in particular across generations or popula-
tions, can occur if causative loci are identified and 
given appropriate weights (Brondum et al., 2015), so 
that there are no linkage disequilibrium phase changes 
and the effect of the quantitative trait loci markers are 
not excessively regressed toward 0. If all causative SNP 
are identified and their substitution effect is constant, 
genomic selection should approach 100% accuracy.

In dairy cattle, complete sequence data were gener-
ated by the 1000 bulls genome project (Hayes et al., 
2014). Several studies used SNP subsets from sequence 
data aiming to improve genomic predictions. Although 
some studies showed no improvement compared with 
using a regular SNP chip (Veerkamp et al., 2016), up to 
a 5% increase in accuracy was achieved by VanRaden 
et al. (2017), when applying nonlinear A (similar to 
BayesA) to a set of 60k “regular” SNP versus a subset 
of the 60k plus 17k potentially causative SNP from 
sequence polymorphisms that had been identified by 
GWAS across traits.

Single-step GBLUP (ssGBLUP) is a popular and 
flexible method for genomic predictions. Fragomeni et 
al. (2017) investigated the possibility of utilizing caus-
ative variants in ssGBLUP in a simulation study, where 
a “weighted” genomic relationship matrix (G), as de-
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fined in Wang et al. (2012), was used to place more 
emphasis to particular markers. With unweighted G, 
the inclusion of causative SNP increased accuracy by a 
maximum of 0.04. After weighting causative variants, 
accuracy increased from 0.07 to 0.30 depending on the 
strategy used (Fragomeni et al., 2017).

The SNP weights commonly used in weighted ssGB-
LUP (Wang et al., 2012) are calculated based on SNP 
solution squared. Some of these methods, when used 
iteratively, diverge as large effects become too large and 
some become too small. Zhang et al. (2016) looked into 
alternative methods for SNP weighting. Nonlinear A 
(VanRaden, 2008) reduces and limits changes in SNP 
weight, converges, and is routinely used in dairy cattle. 
Other methods [quadratic (Wang et al., 2012), Fast-
BayesA (Sun et al., 2012)] have rarely been used in real 
data and diverge in many cases.

In addition, the increases in accuracy by using puta-
tive causal variants from sequence data in VanRaden 
et al., (2017) were obtained using daughter yield de-
viations (i.e., transformed data from regular pedigree-
based evaluations). The effect of this strategy, in real 
data, when using a more comprehensive method such 
as ssGBLUP is still unknown.

The purpose of this study is to evaluate accuracy of 
GBLUP and ssGBLUP, for stature in US Holsteins, 
using regular SNP and selected sequence variants with 
different methods to calculate SNP weights.

MATERIALS AND METHODS

Field Data

Among the 33 traits used for US Holsteins genetic 
evaluation, stature was the one chosen for this study. 
This is because the gain in reliability reported by Van-
Raden et al. (2017) after including selected sequence 
variants to an existing SNP chip was the greatest for 
this specific trait. Phenotypic data were provided by 
Holstein Association USA Inc. (Brattleboro, VT). The 
data were restricted to phenotypes recorded between 
1990 and 2016, and pedigrees were traced 3 generations 
back. The data included 3,999,631 records for stature 
on 3,027,304 cows. Pedigree information was available 
for 4,661,872 animals. Genotypes on 54,087 SNP mark-
ers were available for 26,877 bulls. Additionally, in a 
separate analysis, a total of 16,648 selected sequence 
variants (VanRaden et al., 2017) were included in the 
genotype file, totaling 70,735 markers. Those variants 
were selected based on absolute effect size for 33 traits 
evaluated in US Holsteins. As explained in VanRaden 
et al., (2017), 1000 sequence variants were selected for 
each trait, but after removing duplicates only 16,648 

variants remained. More information about how the 
selected sequence variants were chosen can be found in 
VanRaden et al. (2017).

In our study we investigated only one trait but se-
quence variants obtained based on 33 traits were used. 
This is because using a pooled set of variants instead 
of trait-specific variants avoids the need of having a 
SNP chip/file for each trait and is the logical choice for 
multivariate systems (i.e., as the official evaluations). 
Additionally, using the same set of selected variants as 
in VanRaden et al. (2017) allows for a better compari-
son of methods.

For validation purposes, a reduced data set was con-
structed that consisted of phenotypes up to 2011. A 
total of 2,521 validation bulls were born before 2010 
and had no daughters with records in the reduced data 
set, but at least 30 daughters in the complete data set.

Methods

Both GBLUP and ssGBLUP were used in this study. 
For GBLUP, only genotyped animals were used for 
evaluation. If we consider a to be a vector of additive 
genetic effects, the distribution of a under GBLUP is 
as follows:

 a 0 G~ , ,N aσ
2( )  

where G is a genomic relationship matrix, and σa
2 is the 

additive genetic variance. When only a fraction of ani-
mals is genotyped, single-step GBLUP (ssGBLUP) 
combines pedigree and genomic information into a real-
ized relationship matrix (H), such that a 0 H~  , .N aσ

2( )  
Its inverse has a simple form (Aguilar et al., 2010), 
where A is the numerator relationship matrix:

 H A
G A

− −
− −= +
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The genomic relationship matrix was constructed based 
on VanRaden (2008):

 G
MM

=
′

Σ2 i
m
i ip q
, 

where M is a centered matrix of SNP content, pi and qi 
are gene frequencies, and m is the number of SNP. This 
approach assumes all SNP effects (u) follow a multi-
variate normal distribution, which may not be biologi-
cally true because causative variants are expected to 
have large effects. Markers that are causal or in linkage 
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disequilibrium with causative variants should be given 
higher weights. To account for heterogeneous SNP 
weights, a matrix of weights should be included in the 
formula for constructing G, where var(s) is the vector 
containing the variance of individual SNP effects, and 
di is the ith diagonal element of D, accounting for the 
ith SNP weight:

 var

d
d

dm

s D( ) = =

…
…

… … … …
…
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Based on that, a weighted relationship matrix can be 
defined as

 G
MDM

w =
=

′

Σ j
m

j jp q12
, 

where D is a matrix of weights and each diagonal ele-
ment of this matrix is defined as

 d
p q

i u i
j
m

j j

a

= =σ
σ

, ,2 1
2

2Σ  

where σu i,  
2  can be understood as SNP “prior variances” 

(Meuwissen et al., 2001; Gianola, 2013). In practice, 
σu i,  
2  are not known (or even well defined; Gianola, 2013). 

Several approaches exist to estimate individual SNP 
variances, but σu i,

2  can be approximated from estimates 
of SNP effects as follows. Once genomic predictions are 
obtained by GBLUP or ssGBLUP, SNP effects can be 
calculated using a backsolving process (Stranden and 
Garrick, 2009; VanRaden, 2008; Wang et al., 2012):

 ˆ ˆu DM G a= ′

=

− ,
1

21

1

j
m

j jp qΣ
w  

where û is the vector of estimated SNP effects, and â is 
a vector of genomic EBV (GEBV). Once SNP effects 
are calculated, variances σu i,  

2  can be estimated in 2 
ways:

Quadratic weights: σu i iu,   ˆ .2 2=  This is the marker 
weighting methodology used by Fragomeni et al. (2017), 
and differs from the originally proposed weights ( ;û pqi

22  
Wang et al., 2012) because allele frequencies are not 
considered.

Nonlinear A: σ
σ

u i
a

j
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j j
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 This meth-

od was described by VanRaden (2008) and Cole et al. 
(2009) and is a faster, analogous version of BayesA. In 
the nonlinear A formula, ûi  is the absolute estimated 
SNP effect for marker i, and sd û( ) is the standard de-
viation of the vector of estimated SNP effects. The 
parameter value of 1.25, proposed by VanRaden (2008) 
and 1.2 by Cole et al. (2009), is a constant that deter-
mines how much the distribution of SNP effects departs 
from the normal distribution (i.e., 1 means normal 
distribution). Constant values from 1.115 to 1.40 were 
also tested. The maximum change in weights was lim-

ited by capping the 
ˆ

ˆ
ui
sd u( )

 term at 5 or 10 to avoid ex-

treme SNP effects and to improve convergence. This 
algorithm is regularly used for national US Holstein 
genomic evaluations.

All analyses were run iteratively, updating GEBV 
and SNP weights for 10 iterations. The GEBV were 
calculated in every iteration, and convergence was 
achieved when changes in those values, from current 
to previous iteration, were less than 10−4. Addition-
ally, convergence was assessed by visual inspection of 
reliability plots. Analysis with quadratic weights con-
verged at very low reliability values; therefore, results 
are shown for the second iteration. Reliabilities with the 
quadratic method are expected to decrease after a few 
iterations; consequently, it is recommended to limit the 
number of iterations for maximum predictivity (Zhang 
et al., 2016). Fast BayesA was not attempted in this 
study as initial simulations showed that although it was 
more reliable than the quadratic method, nonlinear A 
converged more consistently (Fragomeni et al., 2018).

Quadratic weights and nonlinear A were compared 
with a benchmark scenario where all SNP were assumed 
to explain the same proportion of additive genetic vari-
ance. This scenario was called unweighted (ss)GBLUP.

Analyses

Data were analyzed with GBLUP and ssGBLUP, 
using pseudo-phenotypes for the first and regular 
phenotypes with a more comprehensive model for the 
last. Pseudo-phenotypes were computed as deregressed 
evaluations (hereby termed DD to avoid confusion with 
the daughter equivalent) following formulas described 
in VanRaden et al. (2009) and Wiggans et al. (2011); 
the reduced data set with phenotypes up to 2011 was 
used:
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where the term 
DE

(DE DE 1)
Prog

Prog PA+ +
 is a measure of 

reliability of DD (RDD) and is shown in Wiggans et al. 
(2011)

 DE = 
REL
1 – RELPA

PA

PA( )
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 DE =
REL
1 – REL

DEProg
EBV

EBV
PA( )
















– , 

where PA is parent average, DEPA is daughter equiva-
lent from parent average, DEProg is daughter equivalent 
from progeny information, RELPA is reliability of PA, 
and RELEBV is reliability of EBV. Daughter equivalent 
formulas from VanRaden and Wiggans (1991) include 
the variance ratio k; however, it is simplified here by 
dividing the numerator and denominator by k to make 
DE unitless and to allow simpler comparison across 
traits. The average (SD) DEProg for validation animals 
based on complete data was 25 (101).

The model used for GBLUP is as follows:

 yp = 1b + Za + e, 

where yp is the vector of DD, b is the general mean, a 
is the additive genetic effect, e is the residual effect, 
and Z is the incidence matrix for the effects contained 
in a. Two different distributions were considered for the 
residuals; a crude one of homogeneous residual vari-
ance, where e N e~ ,,0 Iσ2( )  and I is the identity matrix, 

σe
2 is the residual variance, and a more refined one of 

heterogeneous residual variance with e N e~ ,,0 Rσ2( )  
with R being a diagonal matrix with elements equal to 
the reciprocal of daughter equivalent for each geno-
typed bull. This accounts for the fact that bulls have 
different amounts of information used for computing 
DD. The homogeneous residual variance approach is 
not acceptable in commercial implementations of GB-
LUP because of its inappropriate assumption of equal 
contribution for all sires. It was still considered in the 
present study to compare the effect of SNP weights and 
inclusion of selected variants in a less optimal model.

As no polygenic effect was added to GBLUP, we are 
going to refer to the predictions obtained in this model 
as direct genomic values (DGV).

For ssGBLUP, the model was

 y = Xbf + Whs + Za + e, 

with bf containing fixed effects of herd-year-season, 
age-parity, and lactation stage-parity, and hs contain-
ing the random effect of herd-sire; X is the incidence 
matrix for the effects contained in bf; and W is the 
incidence matrix for the effects contained in hs. More 
details about the model used for stature are described 
in Tsuruta et al. (2002).

Model Validation

Adjusted reliability for validation bulls when using 
genomic models (RELGEN) was calculated based on the 
reduced data set, following the procedure described by 
VanRaden et al. (2009):

 REL
R2
R

+ (REL +REL )/4 – 
R2
RGEN

GEN

DD
S D

PA

DD
=










, 

where RELS and RELD are the EBV reliabilities of sire 
and dam, respectively. The R2PA is the reliability of 
PA calculated as the coefficient of determination of the 
regression of daughter deviation in the complete data 
set (DD2016) on PA in the reduced data set (PA2011). 
This regression was weighted by the reliability of DD in 
the complete data set (RDD_2016), and RDD is the average 
value of RDD_2016. The model fitted was

 DD2016 = b0 + b1 × PA2011, 

where DD2016 was calculated using formulas previously 
shown; b0 is the intercept and b1 is the slope. The 
latter was used as a measure of inflation. The R2GEN is 
the coefficient of determination of genomic predictions, 
which was calculated using the above regression formula 
after replacing PA2011 by DGV2011 (i.e., for GBLUP) or 
GEBV2011 (i.e., for ssGBLUP). As a final result, we 
provided adjusted reliabilities to make our results com-
parable to the ones in VanRaden et al. (2017).

When GBLUP is used, the genomic prediction is only 
based on genomic information and progeny contribu-
tion (i.e., in the form of DD), which makes comparisons 
between predictions based on GBLUP and ssGBLUP 
unfair. This is because ssGBLUP also accounts for 
pedigree information and uses raw phenotypes. In this 
way, for validation animals, we also computed DGV 
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from ssGBLUP as the sum of SNP effects weighted by 
the SNP content.

RESULTS AND DISCUSSION

Adjusted reliabilities rather than coefficients of de-
termination are shown to ease comparisons between 
our results and the ones presented in VanRaden et al. 
(2017). The adjustments convert the squared correla-
tions into published genomic reliabilities. On average, 
adjustments added 14.2 points to coefficients of deter-
mination. Adjusted reliabilities of genomic predictions 
from GBLUP and ssGBLUP without weights, with 
quadratic and nonlinear A weights are in Table 1. The 
adjusted reliabilities reported for quadratic weight were 
from the second iteration, which had the highest value 
over all iterations. Although the visual check is not op-
timal, it is a common practice when quadratic weights 
are used because of lack of a convergence criteria (Wang 
et al., 2012, Zhang et al., 2016). Conversely, nonlinear 
A converges easily, and in our study the convergence 
was reached at the highest accuracy.

When using GBLUP with heterogeneous residual 
variance and quadratic weights for SNP, reliabilities 
decreased by 2.2 and 2.9 points for 54k and 70k (i.e., 

54k + 17k causative variants), compared with the un-
weighted approach. No difference was observed when 
using the nonlinear A rather than the unweighted ap-
proach. However, adding the 17k selected variants did 
increase reliability in the GBLUP with homogeneous 
residual variance. This increase was stable with non-
linear A but it deteriorated after the second iteration 
with quadratic weights. However, even after weighting, 
the model assuming homogeneous residual variance did 
not reach the level of accuracy of the 2 more robust 
models: GBLUP with heterogeneous residual variance 
and ssGBLUP.

For ssGBLUP, adding selected variants with a proper 
weight only slightly increased reliabilities, however the 
increment was less than the observed by VanRaden et 
al. (2017). Similar results were found without adding 
weights (Table 1). Additionally, we applied the SNP 
weights calculated for stature by VanRaden et al. 
(2017), but again, reliability was 76.0. Although no im-
provements were observed whether weights were used 
or not, reliability from ssGBLUP was 2.7 points greater 
than the best GBLUP heterogeneous scenario (73.4). 
One possible explanation for the discrepancy in results 
between methods is that ssGBLUP deals with more 
information than multistep procedures, especially when 

Table 1. Reliability for genomic BLUP (GBLUP) and single-step GBLUP (ssGBLUP) when including selected variants to the 54k SNP panel 
under different weighting approaches

Method
Adjusted  
reliability

Gain from adjusted reliability  
compared with parent average

Gain from adjusted reliability compared  
with DGV1 from ssGBLUP

Parent average 38.6 0.0 0.0
GBLUP, homogeneous2    
 Unweighted 54k 68.8 30.2 −5.5
 Unweighted 70k 69.5 30.9 −4.8
 Quadratic 54k 68.4 29.8 −5.9
 Quadratic 70k 68.3 29.7 −6.0
 Nonlinear A 54k 70.8 32.2 −3.5
 Nonlinear A 70k 70.9 32.3 −3.4
GBLUP, heterogeneous3    
 Unweighted 54k 72.4 33.8 −1.9
 Unweighted 70k 73.4 34.7 −1.0
 Quadratic 54k 70.5 31.9 −3.8
 Quadratic 70k 70.4 31.8 −3.9
 Nonlinear A 54k 73.2 34.6 −1.1
 Nonlinear A 70k 73.3 34.7 −1.0
ssGBLUP, GEBV4    
 Unweighted 54k 75.3 36.7 1.0
 Unweighted 70k 76.0 37.4 1.7
 Quadratic 54k 71.6 33.0 −2.7
 Quadratic 70k 72.1 33.5 −2.2
 Nonlinear A 54k 75.5 36.9 1.2
 Nonlinear A 70k 75.9 37.3 1.6
ssGBLUP, DGV5    
 Unweighted 54k 74.3 35.7 0.0
1DGV = direct genomic value.
2GBLUP considering homogeneous residual variance. 
3GBLUP considering heterogeneous residual variance weighted by daughter equivalent. 
4GEBV obtained by ssGBLUP.
5DGV obtained by SNP effects from ssGBLUP.
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de-regressions are used in the latter. In this way, any 
assumption made a priori about the SNP effects is over-
whelmed by the data in ssGBLUP, whereas in GBLUP 
each extra piece of information may have some effect. 
Another reason is the explicit contribution of parent 
average in ssGBLUP. In addition, some reliability can 
be lost in multistep because of approximations used in 
the deregression step.

Karaman et al. (2016) showed that accuracies from 
weighted and unweighted multistep methods converged 
to the same value as the amount of data increased (i.e., 
number of genotyped animals). Lourenco et al. (2017) 
used simulations to demonstrate that SNP weighting is 
not needed in ssGBLUP when the genotyped popula-
tion is large (>5k). This was true for oligogenic and 
polygenic traits. For the latter, weighting harmed pre-
dictions even when the number of genotyped animals 
was as low as 2k. For oligogenic traits or when few 
SNP show strong effect, as in the case of milk contents, 
strongly affected by DGAT1 (Grisart et al., 2004), 
SNP weighting has shown to be beneficial in small 
data sets, although its benefit decreases for large data 
sets (VanRaden et al., 2009, 2011). In fact, quadratic 
weights increased prediction accuracy for bacterial cold 
water disease in rainbow trout (Vallejo et al., 2016) and 
fat and protein percentages in a small Israeli Holstein 
population (Lourenco et al., 2014) using weighted ssG-
BLUP, compared with unweighted ssGBLUP.

Figure 1 shows adjusted reliabilities for all 10 itera-
tions when the selected variants were present in the 
data. Iteration 1 means equal weights were assigned 
for all SNP. If a plateau is reached, the convergence is 
obtained and SNP variances do not change after that, 
keeping the reliability steady. It is clear that quadratic 
weights in GBLUP and ssGBLUP tend to diverge. In 
fact, the same result was also observed with simulated 

data (results not shown). Drops in reliability were not 
observed for the nonlinear A weights.

The extent of inflation (b1) in the estimates depended 
on the method; however, weights also affected b1 in a 
smaller scale (Table 2). The GBLUP methods had b1 
values between 0.88 and 0.9 when G was unweighted or 
weighted by the nonlinear A method. Quadratic weights 
resulted in b1 lower than 0.7. Under ssGBLUP, b1 val-
ues were 0.87 or 0.88 for unweighted G and nonlinear 
A, whereas quadratic weights had b1 values as low as 
0.79. The DGV predictions with ssGBLUP lead to the 
least inflated values. Those results show that multi-step 
procedures return less inflated estimates.

When large causative variants are included in the 
model, we expect an increase in reliability by properly 
accounting for them. Among the weights we tested, 
it was clear that the quadratic approach was unable 
to correctly use the selected variants, because of the 
extreme changes in weights at each iteration. Nonlinear 
A method is suitable for polygenic traits; however, its 
implementation for weight updates in ssGBLUP may 
not have resulted in maximum reliability. Overall, the 
lack of improvement in reliability for ssGBLUP can 
be because the selected variants may have had only 
small effects, and because given the large data set, the 
prior information on SNP effects does not change the 
final result. The increase in accuracy using weights in 
homogeneous GBLUP suggests that weights somehow 
compensate for model weaknesses. The exact mecha-
nism is not clear, but a possible hypothesis is a better 
model fitting because of extra flexibility provided by 
weights. Therefore, different SNP weights in G could 
be implicitly explaining some of the variance due to 
different number of daughters per bull.

This study raises several questions. Was any im-
provement in VanRaden et al. (2017) due to problems 

Figure 1. Adjusted reliabilities from direct genomic value obtained by genomic BLUP (GBLUP) and genomic EBV (GEBV) obtained by 
ssGBLUP with weighted genomic relationship matrix in the first 10 iterations. The GBLUP assumed heterogeneous residual variance (GBLUP) 
and homogeneous residual variance (GBLUP HOM). Weights used were calculated by the nonlinear A (NON-A) and quadratic weights (QUA) 
when the causative variants were in the data (i.e., 70k SNP markers).
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with pseudo-observations? However, similar improve-
ments were obtained by VanRaden et al. (2017) using 
simulated data, where these problems were absent. Is 
ssGBLUP, which uses all information, less sensitive to 
SNP weighting? In a previous study, assigning simu-
lated true weights to causative loci in ssGBLUP was 
effective in improving reliabilities (Fragomeni et al., 
2017), but the number of causative loci was reduced. 
Also, there is an implicit assumption that causal loci 
are biallelic, which does not necessarily hold.

Using trait-specific G for many traits in ssGBLUP 
may be expensive and may prohibit multiple-trait 
models. On the other hand, using no weights provides 
simple implementation. For instance, genomic evalua-
tion in Angus includes multiple traits with maternal ef-
fects and uses ssGBLUP with unweighted G for regular 
weekly evaluations, and SNP predictions derived from 

GEBV of ssGBLUP for rapid interim predictions (Lou-
renco et al., 2015).

CONCLUSIONS

For stature, improvements in GBLUP may be be-
cause the weights in G change the covariance structure, 
which can explain a proportion of the variance that is 
accounted for when weighting the observations by the 
number of daughters per bull (i.e., using heterogeneous 
residual variance). Using quadratic weights for SNP is 
not beneficial when selected variants have a small ef-
fect, because of extreme values. Nonlinear A is stable 
and more accurate than quadratic weights, and its use 
is highly advised. Adding selected variants slightly in-
creases reliabilities for single-step GBLUP. Therefore, 
this method seems less affected by prior information 
about the genetic architecture of the trait and provides 
greater accuracy/reliability than multistep methods.
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