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ABSTRACT

The objective was to compare methods of modeling 
missing pedigree in single-step genomic BLUP (ssGB-
LUP). Options for modeling missing pedigree included 
ignoring the missing pedigree, unknown parent groups 
(UPG) based on A (the numerator relationship matrix) 
or H (the unified pedigree and genomic relationship 
matrix), and metafounders. The assumptions for the 
distribution of estimated breeding values changed with 
the different models. We simulated data with herita-
bilities of 0.3 and 0.1 for dairy cattle populations that 
had more missing pedigrees for animals of lesser genetic 
merit. Predictions for the youngest generation and UPG 
solutions were compared with the true values for vali-
dation. For both traits, ssGBLUP with metafounders 
provided accurate and unbiased predictions for young 
animals while also appropriately accounting for genetic 
trend. Accuracy was least and bias was greatest for ss-
GBLUP with UPG for H for the trait with heritability 
of 0.3 and with UPG for A for the trait with heritabil-
ity of 0.1. For the trait with heritability of 0.1 and UPG 
for H, the UPG accuracy (SD) was −0.49 (0.12), sug-
gesting poor estimates of genetic trend despite having 
little bias for validations on young, genotyped animals. 
Problems with UPG estimates were likely caused by 
the lesser amount of information available for the lower 
heritability trait. Hence, UPG need to be defined dif-
ferently based on the trait and amount of information. 
More research is needed to investigate accounting for 
UPG in A22 to better account for missing pedigrees for 
genotyped animals.
Key words: genetic group, metafounder, single-step 
genomic BLUP (ssGBLUP), unknown parent group

INTRODUCTION

Unknown parent groups (UPG) were developed to 
account for missing pedigrees in a population (Thomp-
son, 1979; Quaas, 1988). Ignoring these missing pedi-
grees in genetic evaluations required assuming all the 
missing parents shared the same average breeding 
value. Hence, UPG were developed to model differences 
in genetic merit across categories of missing parents 
such as sex, birth year, selection path, country, and 
so on (Quaas, 1988; Westell et al., 1988). Although 
UPG were originally developed to account for missing 
parents of one population, UPG can also account for 
breed differences (Legarra et al., 2007), and appropri-
ate UPG definitions become even more important in 
multi-breed evaluations (VanRaden et al., 2007). With 
the implementation of genomic selection, UPG need to 
be incorporated into single-step genomic models.

The first genomic implementation simply used the 
original pedigree-based UPG in single-step genomic 
BLUP (ssGBLUP; Tsuruta et al., 2014). The theory 
was then extended to include UPG with the combined 
pedigree and genomic relationship matrix (Misztal et 
al., 2013). These approaches had different assumptions 
for UPG effects, and the practical implications of the 
different approaches were undocumented. Each model 
has been implemented individually, as UPG for A (the 
numerator relationship matrix; Tsuruta et al., 2014) 
and H (the unified pedigree and genomic relationship 
matrix; Johnston et al., 2018; Masuda et al., 2018) 
with limited comparisons between models. Legarra et 
al. (2015) suggested another approach to model missing 
pedigrees called “metafounders” that used genotypes to 
relax the common assumptions for UPG.

Researchers have applied ssGBLUP to the Nordic 
dairy cattle evaluations for many traits. Although 
analyses with UPG for A worked well for medium-
heritability production traits (Koivula et al., 2015), 
models with UPG for A converged extremely slowly 
for 11 low-heritability fertility traits, whereas models 
with UPG for H converged well and produced reason-
able predictions (Matilainen et al., 2016). The Nordic 
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dairy data included different breeds and relatively few 
incomplete pedigrees. Misztal et al. (2017) looked at 
optimization of ssGBLUP for type traits, which have 
nearly complete pedigrees. The greatest reliability and 
least bias were obtained with UPG for H, while also 
accounting for inbreeding for unknown parents (Van-
Raden, 1992) in the construction of H. Masuda et al. 
(2018) reported lower reliability for Holstein produc-
tion data using UPG for H than for A and for no UPG. 
Their study used 764,000 genotyped animals with many 
animals with incomplete pedigrees.

Thus, our understanding of how to model UPG in a 
genomic evaluation context is based on very few studies 
that are incomplete and sometimes contradictory. The 
objectives of this study were to understand the benefits 
and limitations of different approaches for modeling 
missing pedigree in ssGBLUP for a single breed. Simu-
lation was used to compare predictions from different 
models to true values for UPG effects and validation 
animals.

MATERIALS AND METHODS

Animal care and use committee approval was not 
needed as all data were simulated.

Models

We modeled data as follows:

 y = 1μ + Za + ZQs + e, 

where y was the vector of simulated phenotypes, μ was 
the fixed mean, Z was an incidence matrix relating 
animals to observations, a was the vector of random 
additive genetic effects, Q was the matrix containing 
UPG compositions for all individuals, s was the vector 
of UPG effects, and e was the vector of random residu-
als. Residuals were assumed distributed as N e0, Iσ2( ). 
Assumptions for the distribution of a changed with the 
different models. The Qs term was not included in 
models without UPG, and EBV were equivalent to a in 
these models. For models with UPG, the EBV were

 u = Qs + a, 

where u was the total EBV including UPG effects. All 
analyses included inbreeding in the calculation of nu-
merator relationship matrices (VanRaden, 1992). Data 
were modeled with and without UPG, with and with-
out genomics, and with different assumptions regarding 
the genomic implementation for UPG. All data were 

analyzed in BLUPF90 (Misztal et al., 2018) and our 
own software for the metafounders analysis.

BLUP

We implemented BLUP with and without UPG. The 
mixed model equations with no UPG were
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where µ̂ was the estimated overall mean, A was the 
numerator relationship matrix, and λ was the ratio of 
residual to genetic variance. The variance components 
were assumed the same as those used to simulate the 
data. In this model, EBV were computed directly as ˆ.u  
The mixed model equations for BLUP with QP-trans-
formed UPG were (Quaas, 1988)
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where ŝ = estimates for UPG solutions. The inverse 
covariance matrix,
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can be built directly using the rules in Quaas (1988).

ssGBLUP

The first genomic model was the classic implementa-
tion of ssGBLUP (Aguilar et al., 2010, Christensen and 
Lund, 2010). With this model, no UPG were modeled, 
and the mixed model equations were

 
′ ′

′ ′ +
























 =

′
′










−

1 1 1 Z

Z 1 Z Z H u
1 y
Z yλ 1

1

ˆ
ˆ
µ

 

with

 H A
0 0

0 G A
− −

− −= +
−















1 1
1

22
1 , 

where u1 was the vector of breeding values ordered 
nongenotyped followed by genotyped animals and 
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hereafter defined as u; G was the genomic relationship 
matrix (VanRaden, 2008); and A22 was the partition 
of the numerator relationship matrix for genotyped 
animals. G was blended as G = 0.99Goriginal + 0.01I, 
where Goriginal was computed by the first method of 
VanRaden (2008) assuming 0.5 allelic frequencies. No 
tuning was used, meaning G was not scaled to match 
A22 (Chen et al., 2011; Forni et al., 2011; Vitezica et al., 
2011; Christensen et al., 2012). These assumptions were 
made to construct G in a similar manner as metafound-
ers. Results with default blending (G = 0.95Goriginal + 
0.05A22) and default tuning (as in Christensen et al., 
2012) in BLUPF90 (Misztal et al., 2018) were very 
similar (unpublished data).

ssGBLUP with UPG for A−1

The next development in modeling UPG was to 
incorporate the original pedigree-based UPG into the 
ssGBLUP mixed model equations. The left-hand-side 
of the QP-transformed coefficient matrix of the mixed 
model equations, ignoring fixed effects, was
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above, 1 denotes nongenotyped animals, and 2 denotes 
genotyped animals. The UPG solutions in the last row 
were functions of pedigree relationships but not cor-
rected for genomic or pedigree relationships among 
genotyped animals.

ssGBLUP with UPG for H−1

The next model was proposed by Misztal et al. 
(2013) by extending the Quaas (1988) model for UPG 
to ssGBLUP. With this model, the covariance matrix 
A was replaced by H for UPG solutions in ssGBLUP. 

The left-hand-side of the QP-transformed coefficient 
matrix, ignoring fixed effects, was
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where Q2 was the matrix containing UPG compositions 
for genotyped animals. In this model, UPG solutions 
depend on A−1, A22

1− ,  and G−1 in a similar manner as 
EBV solutions. This model was equivalent to explicitly 
modeling UPG as covariates in ssGBLUP. One poten-
tial issue with this implementation is the construction 
of A22

1−  by ignoring UPG.

ssGBLUP with Metafounders

An alternative approach was to model missing pedi-
grees with metafounders (Legarra et al., 2015). Addi-
tional random founder animals (metafounders) modeled 
the missing pedigrees, and these metafounders could 
have nonzero inbreeding and relationships to each other. 
The relationship matrix among metafounders, Γ, was a 
function of genetic similarity across populations [Γij = 
8cov(pi,pj), where pi represents the allelic frequencies in 
metafounder population i] and was estimated using 
generalized least squares, which was previously shown 
to be an accurate estimator (Garcia-Baccino et al., 
2017). The Γ was used to calculate A(Γ)−1 which is the 
inverse of the numerator relationship matrix in the 
context of metafounders, as described in Legarra et al. 
(2015). First, inbreeding for all animals was computed 
starting from Γ. This approach resulted in inbreeding 
greater than or equal to the inbreeding without meta-
founders because the relationships between metafound-
ers were positive and metafounders had nonzero in-
breeding. The A(Γ)−1 was initialized by adding Γ−1 to 
the metafounder elements. Then, the rest of A(Γ)−1 
was created by Henderson (1976) rules. Finally, A(Γ)−1 

was multiplied by 1
2

− +
diag(

,
Γ

Γ
)

 where diag( )Γ  was the 

mean diagonal element of Γ, and Γ was the mean ele-
ment in Γ, to fit the genetic variance correctly. The 
left-hand-side of the mixed model equations was
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where m̂ were the metafounder solutions, Z was en-
larged to include 3 metafounders, and
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where 1 denotes nongenotyped individuals, 2 denotes 
genotyped individuals, and 3 denotes metafounders.

Simulation Population. Data were simulated us-
ing QMSim v1 (Sargolzaei and Schenkel, 2009) for 20 
replicates, and the parameter file is available in Sup-
plemental File S1 (https: / / doi .org/ 10 .3168/ jds .2018 
-15434). We simulated 2 sex-limited traits in separate 
simulations, one with heritability of 0.3 and one with 
heritability of 0.1. The historical population began with 
5,000 individuals, decreased gradually to 250 at genera-
tion 1,000, and increased gradually to 30,000 at genera-
tion 1,100. Fluctuations in population size were used to 
generate linkage disequilibrium consistent with a dairy 
cattle population. The last historical generation had 
350 males and 29,650 females. From this population, 
50 males and 14,950 females were randomly selected to 
be founders of the recent population. The replacement 
rate was 30% with random mating for 10 generations. 
Each female had 1 offspring per generation, with an 
equal probability of male or female offspring. Individu-
als were selected based on EBV calculated from animal-
model BLUP within QMSim (Sargolzaei and Schenkel, 
2009). All females were phenotyped except the last gen-
eration, which was used for validation. The numbers of 
animals and phenotypes were reported in Table 1. For 
the trait with heritability of 0.3, genetic trend increased 
by 4.42 (0.25) genetic SD (SD of replicates) over 10 

generations, and for the trait with heritability of 0.1, 
genetic trend increased by 3.59 (0.33) genetic SD (SD 
of replicates).

Genome. The genome mimicked that of dairy cattle 
with 29 autosomes with a genome length of 2,319 cM. 
The traits were entirely controlled by 500 biallelic QTL 
that were randomly spaced throughout the genome. 
The QTL effects were drawn from a gamma distribu-
tion (shape = 0.4, scaled internally for genetic vari-
ance of 0.3 or 0.1). There were 50,000 biallelic SNP 
equally spaced throughout the genome. Both SNP and 
QTL had 0.5 allelic frequencies to start the historical 
population, 2.5 × 10−5 mutations per meiosis per locus, 
and 1 crossover per Morgan per meiosis. The SNP had 
mean (SD) pooled squared correlation coefficient per 
chromosome of 0.30 (0.02) in the last generation based 
on internal calculations in QMSim.

All individuals in the most recent 5 generations had 
the opportunity to be genotyped. Within each genera-
tion, individuals were ranked in the top or bottom half 
of each sex based on BLUP EBV. The top half of males 
(females) had a 0.35 (0.35) probability of being geno-
typed, and the bottom half of males (females) had a 
0.10 (0.20) probability of being genotyped. Genotyped 
individuals were randomly selected with the constraint 
that all sires within those generations were genotyped. 
In total, 18,685 individuals were genotyped in each 
replicate.

Missing Pedigrees. After simulating the entire 
data in QMSim, we generated missing pedigrees based 
on sex, genotype status, and genetic merit. Genetic 
merit was evaluated by identifying the top half and 
bottom half of males by comparing the males’ EBV to 
the average male EBV in a given generation. The EBV 
were calculated from animal-model BLUP because ani-
mals were selected based on BLUP EBV using full data 
and pedigree. The same process was done for females 
independently of the males. The simulated probabilities 
for missing dams were presented in Table 2, and the 
numbers of animals with unknown dams were presented 
in Table 3.

Table 1. Descriptive statistics for simulated data

Item

Males

 

Females

 

Total

n SD n SD n SD

h2 = 0.3         
 Pedigree 89,718 190  74,782 190  164,500 0
 Genotyped 10,282 44  8,404 36  18,686 8
 Phenotypes 0 0  82,247 159  82,247 159
h2 = 0.1         
 Pedigree 89,659 237  74,841 237  164,500 0
 Genotyped 10,272 41  8,412 35  18,684 8
 Phenotypes 0 0  82,177 212  82,177 212

https://doi.org/10.3168/jds.2018-15434
https://doi.org/10.3168/jds.2018-15434
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Validations

EBV. The last generation of the recent population 
was used for validation. These animals had no pheno-
types and some had genotypes. All genotyped young 
animals were used in validations (5,042 ± 10). All EBV 
were standardized so that the founders of the most 
recent population had a mean of 0. Accuracy was mea-
sured as the correlation between true breeding value 
(TBV) and EBV. The dispersion was measured as the 
regression coefficient from regressing TBV on EBV. 
Bias was evaluated for all genotyped young animals 
with a missing dam (157 ± 2) as TBV minus EBV 
and scaled by the genetic SD. Bias was assessed this 
way to directly observe the impact of different models 
for missing pedigree on EBV predictions. The number 
of rounds to convergence in preconditioned conjugate 
gradient was reported based on a convergence criterion 
of 10−14 (Tsuruta et al., 2001). Analyses were compared 
based on the heritability, type of model for UPG, and 
complete versus missing pedigrees.

UPG. Unknown parent groups were defined as gen-
erations 0 to 4 (UPG1), 5 to 7 (UPG2), and 8 to 10 
(UPG3). The numbers of times each UPG was present 
in the pedigree and was the parent of a phenotyped 
animal is presented in Table 4. True UPG effects were 
calculated as the weighted average TBV for the missing 
parents within each UPG definition. The accuracy of 
UPG solutions was the correlation between true and 
estimated values. Bias was assessed for estimable func-
tions (contrasts) of UPG, defined as UPG2 – UPG1, 
UPG3 – UPG1, and UPG3 – UPG2. Bias was the true 

value of the estimable function minus estimated and 
scaled by the genetic SD.

RESULTS AND DISCUSSION

The Γ estimates for the trait with heritabilities of 0.3 
and 0.1 were, respectively,

 Γ =
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and were estimated based on the first replicate and 
used for all replicates. The Γ were relationship matrices 
among the 3 metafounders, defined the same way as 
the 3 UPG. The Γ were nearly identical between the 
heritabilities because Γ was dependent not on pheno-
type but on variation in pedigrees and genotypes. The 
Γ indicated strong correlations between metafounders, 
which made sense because metafounders were proxies 
for animals that actually belong to the same popula-
tion. These correlations were ignored when using UPG 
to model missing pedigree and were much stronger than 
those estimated between swine breeds (Xiang et al., 
2017) but similar to those between dairy breeds (Le-
garra et al., 2015). Had Γ been a 0 matrix, the model 
would be equivalent to having UPG for A. Had Γ been 
an identity matrix, there would be no equivalence with 
other models because metafounders would still create 
greater inbreeding and different variances in the Men-
delian samplings used in the setup of A−1.

We calculated the true value of Γ based on the allelic 
frequencies by generation for the 50,000 SNP using all 
simulated animals. For each metafounder, the allelic 

Table 2. Simulated probabilities for missing dams based on sex, 
genotype status, and genetic merit (top vs. bottom half of a sex within 
each generation based on EBV)

Type Males Females

Top, genotyped 0.00 0.05
Top, nongenotyped 0.00 0.05
Bottom, genotyped 0.10 0.10
Bottom, nongenotyped 0.30 0.30

Table 3. Descriptive statistics for animals with simulated missing dams based on sex, genotype status, and 
genetic merit (top vs. bottom half of a sex within each generation based on EBV)

Type

h2 = 0.3

 

h2 = 0.1

n SD n SD

Top female, nongenotyped 368 18 378 8
Bottom female, genotyped 10,089 90 10,066 75
Bottom female, nongenotyped 183 11 184 13
Bottom male, genotyped 10,667 91 10,688 78
Bottom male, nongenotyped 1,548 42 1,541 32
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frequencies were calculated based on the mean allelic 
frequency for the generations included in a given meta-
founder. The Γ was 8 times the covariance of allelic 
frequencies between 2 metafounders. The matrices cor-
responding to the true Γ for the trait with heritabilities 
of 0.3 and 0.1, respectively, were

 
0 54 0 56 0 55
0 56 0 63 0 65
0 55 0 65 0 71
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. . .
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The mean matrices were all within 0.03 of those for 
the first replicates. The SD for these true values were 
all less than 0.03, with more variability for the 2 more 
recent UPG. The estimated Γ closely aligned with the 
true Γ, especially for the relationships with the first 
metafounder. Because genotypes were used to calcu-
late Γ and genotyping did not start until generation 6, 
the estimates for the first metafounder were based on 
genotyped animals from later generations. This result 
indicated the method was robust to estimating meta-
founders that were recently related to but not included 
in the genotyped population.

Table 5 shows EBV validation results for different 
combinations of models. For the trait with heritability 
of 0.3, the best models were ssGBLUP with no UPG, 
with UPG for A, and with metafounders. The ssGB-
LUP with metafounders model was especially similar to 
the ssGBLUP analysis of the complete pedigree. Single-
step genomic BLUP with UPG for H had more biased 
EBV than ssGBLUP without UPG. Bias was greater 
for nongenotyped animals missing a dam but followed 
a similar trend to the presented results. This increased 
bias was likely caused by biased UPG solutions for 
ssGBLUP with UPG for H (Table 6). Overall genetic 

trend was underestimated by more than 1 genetic SD 
over 10 generations (Table 7). In addition, the BLUP 
analyses were unbiased with the complete pedigree but 
severely biased when pedigrees were missing. Hence, 
the issues with modeling UPG may stem from the basic 
assumptions for UPG effects.

For the trait with heritability of 0.1, the best models 
were ssGBLUP with metafounders and with UPG for 
H because the other models had biased EBV for young 
animals with missing dams. Again, the metafounders 
method was most similar to ssGBLUP with complete 
pedigree. Including UPG caused a slight decrease in 
accuracy and an increase in dispersion, especially for 
UPG for A, although the difference is not likely to be 
significant. The decrease in accuracy and increase in 
dispersion were also observed when including UPG in 
BLUP. One concern about ssGBLUP with UPG for A 
was the 20% increase in the number of rounds to con-
vergence, indicating greater numeric instability (Table 
5). Although all simulations converged in a reasonable 
number of rounds, this behavior is problematic in in-
dustry data (Matilainen et al., 2016).

We further investigated EBV by summarizing bias 
for genotyped animals based on the amount of pedigree 
information in one replicate of the trait with heritabil-
ity of 0.1 (Figure 1). For ssGBLUP with UPG for A, 
bias was evident in overestimation of EBV for geno-
typed animals missing dams. For ssGBLUP with UPG 
for H, bias occurred for individuals missing dams or 
maternal granddams, indicating issues with the final 
UPG solution. For ssGBLUP with metafounders, no 
systematic bias existed based on pedigree completeness. 
The EBV from ssGBLUP with UPG for H and with 
metafounders are plotted in Figure 2. The EBV were 
shifted slightly to the left of the graph for animals with 
missing pedigree, indicating a discrepancy between the 
models. The EBV differed more between models when 
the missing pedigree was more recent. This difference 
occurred because EBV for young animals depend on 
the UPG contribution from G A Q s− −−( )1

22
1

2  ̂ in ssGB-
LUP with UPG for H. Animals had larger UPG contri-
butions when recent pedigrees were missing because 

Table 4. Numbers (SD) of animals with unknown parent groups (UPG) as parents for the entire pedigree and 
for phenotyped animals

UPG1

Heritability = 0.3

 

Heritability = 0.1

Pedigree Phenotype Pedigree Phenotype

1 39,723 (66) 20,169 (51) 39,721 (80) 20,181 (63)
2 6,873 (66) 3,677 (64) 6,911 (73) 3,684 (62)
3 6,260 (67) 2,151 (53) 6,225 (59) 2,126 (35)
1UPG were defined as follows: 1 = generations 0 to 4, 2 = generations 5 to 7, 3 = generations 8 to 10.
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A22
1−  accounted for only known pedigree, whereas G−1 

accounted for all genetic relationships even if pedigree 
was missing. Based on these results, the metafounder 
solutions were expected to be less biased than UPG 
solutions for either model. The models with UPG in 
ssGBLUP did not enable fair comparisons of individu-
als with different pedigree completeness because of the 
biased EBV for individuals with missing pedigrees. The 

EBV bias likely resulted from biased estimates of UPG 
effects.

In general, UPG solutions were underestimated 
(Table 6). The BLUP with UPG model underestimated 
genetic trend by more than 1 genetic SD for the trait 
with heritability of 0.3 and by more than 3 genetic 
SD for the trait with heritability of 0.1. The ssGB-
LUP with UPG for H solutions were similar to the 

Table 5. Validation results for BLUP and single-step genomic BLUP (ssGBLUP) models including or excluding unknown parent groups (UPG)

Model  UPG1 Accuracy2 Accuracy SD b1
3 b1 SD Bias4 Bias SD Rounds (SD)5

h2 = 0.3         
 BLUP Complete 0.45 0.04 1.03 0.07 0.08 0.04 86 (2)
 BLUP None 0.36 0.03 0.59 0.06 1.57 0.14 85 (2)
 BLUP A 0.42 0.03 0.83 0.06 1.65 0.19 81 (4)
 ssGBLUP Complete 0.77 0.02 1.07 0.03 0.04 0.03 181 (8)
 ssGBLUP None 0.76 0.02 1.10 0.04 −0.14 0.05 180 (8)
 ssGBLUP A 0.76 0.02 1.06 0.04 −0.21 0.05 221 (8)
 ssGBLUP H 0.73 0.03 1.05 0.05 −0.83 0.10 170 (8)
 ssGBLUP Meta 0.77 0.02 1.05 0.04 −0.03 0.04 122 (6)
h2 = 0.1         
 BLUP Complete 0.38 0.06 0.96 0.12 0.06 0.06 113 (5)
 BLUP None 0.28 0.05 0.49 0.08 1.23 0.14 113 (6)
 BLUP A 0.26 0.05 0.40 0.08 2.88 0.18 110 (5)
 ssGBLUP Complete 0.65 0.03 1.02 0.06 0.01 0.06 263 (8)
 ssGBLUP None 0.63 0.04 1.08 0.06 −0.31 0.07 261 (8)
 ssGBLUP A 0.61 0.03 0.90 0.06 −0.37 0.09 294 (8)
 ssGBLUP H 0.62 0.04 1.02 0.06 0.11 0.14 238 (8)
 ssGBLUP Meta 0.64 0.04 0.94 0.05 −0.01 0.07 161 (8)
1Complete: full data were used with no missing pedigrees to model; None: did not model missing pedigrees, A: UPG formed for A−1, H: UPG 
formed for H−1, and Meta: metafounders.
2SE ≤ 0.01.
3SE ≤ 0.03.
4Bias = (TBV – EBV)/σu, 0.01 ≤ SE ≤0.04, where TBV = true breeding value and σu = additive genetic SD.
5Metafounders were analyzed with different software to convergence criteria of 10−12 and were not directly comparable.

Table 6. Validation results (SD) for unknown parent group (UPG) solutions from BLUP and single-step 
genomic BLUP (ssGBLUP) models

Model  UPG1 Accuracy

UPG bias2

2 – 13 3 – 14 3 – 25

h2 = 0.3      
 BLUP A 0.97 (0.02) 1.13 (0.10) 1.33 (0.13) 0.20 (0.12)
 ssGBLUP A 0.98 (0.01) 0.83 (0.10) 0.49 (0.12) −0.34 (0.09)
 ssGBLUP H 0.95 (0.03) 1.35 (0.09) 1.64 (0.13) 0.30 (0.12)
 ssGBLUP Meta 0.98 (0.01) 0.76 (0.09) 0.76 (0.12) 0.00 (0.08)
h2 = 0.1      
 BLUP A −0.38 (0.15) 2.80 (0.09) 3.10 (0.12) 0.30 (0.14)
 ssGBLUP A 0.88 (0.03) 1.30 (0.09) 0.20 (0.12) −1.10 (0.13)
 ssGBLUP H −0.49 (0.12) 3.01 (0.09) 3.36 (0.12) 0.35 (0.15)
 ssGBLUP Meta 0.93 (0.03) 0.89 (0.06) 0.69 (0.06) −0.20 (0.08)
1Models based on the numerator relationship matrix (A), the combined pedigree and genomic relationship 
matrix (H), or metafounders (Meta).
2Bias = (TBV – EBV)/σu, where TBV = true breeding value and σu = additive genetic SD. UPG defined as 
generations 0 to 4 (1), 5 to 7 (2), and 8 to 10 (3).
3Estimable function defined as UPG 2 – UPG 1.
4Estimable function defined as UPG 3 – UPG 1.
5Estimable function defined as UPG 3 – UPG 2.
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BLUP with UPG solutions. This result coincides with 
the more similar genetic trend and EBV predictions for 
BLUP with UPG and for ssGBLUP with UPG for H 
than for BLUP with UPG and ssGBLUP with UPG 
for A (Matilainen et al., 2016). For most estimable 
functions, ssGBLUP with metafounders was the least 
biased model, especially for the more problematic trait 
with heritability of 0.1. Interestingly, the metafounders 
approach was often best at predicting group differences 
for both heritabilities (Table 7). For ssGBLUP with 
UPG for A and the trait with heritability of 0.1, the 
UPG solutions were essentially the same for the first 2 
UPG (Table 7). For ssGBLUP with UPG for H and the 

trait with heritability of 0.1, the first UPG solution was 
the largest, resulting in an unexpected trend for UPG 
solutions. Because the population underwent selection, 
these solutions were not reasonable, because the first 
UPG should have the smallest solution. The inconsis-
tency in the direction of genetic trend affected the accu-
racy of the UPG solutions (Table 6). It is worth noting 
that the issues with UPG were not restricted to ssGB-
LUP because BLUP also had problems with estimating 
genetic trend. The UPG solutions should be checked for 
unexpected behavior, as the issue was not immediately 
evident in EBV validations for young animals. In ad-
dition, care is needed to ensure enough data in the 

Table 7. Estimable functions of unknown parent group (UPG) solutions from BLUP and single-step genomic 
BLUP (ssGBLUP) models

Model  UPG1 2 −12 SD 3 – 13 SD 3 – 24 SD

h2 = 0.3        
 BLUP A 0.51 0.19 1.74 0.20 1.22 0.10
 ssGBLUP A 0.81 0.19 2.58 0.22 1.77 0.09
 ssGBLUP H 0.29 0.17 1.42 0.19 1.13 0.10
 ssGBLUP Meta 0.88 0.18 2.31 0.20 1.43 0.07
 Simulated True 1.37 0.11 2.85 0.20 1.48 0.11
h2 = 0.1        
 BLUP A −1.46 0.18 −0.59 0.26 0.87 0.16
 ssGBLUP A 0.04 0.20 2.31 0.29 2.27 0.19
 ssGBLUP H −1.67 0.16 −0.85 0.24 0.82 0.17
 ssGBLUP Meta 0.26 0.15 1.68 0.22 1.42 0.11
 Simulated True 1.16 0.13 2.37 0.22 1.22 0.12
1UPG defined as generations 0 to 4 (1), 5 to 7 (2), and 8 to 10 (3); models based on the numerator relationship 
matrix (A), the combined pedigree and genomic relationship matrix (H), or metafounders (Meta).
2Estimable function defined as (UPG 2 – UPG 1)/σu, where σu = additive genetic SD.
3Estimable function defined as (UPG 3 – UPG 1)/σu.
4Estimable function defined as (UPG 3 – UPG 2)/σu.

Figure 1. Boxplots of bias (TBV – EBV/SD, where TBV = true breeding value) for genotyped animals with 2 generations of complete 
pedigree, missing dam, and missing maternal granddam (MGD) in single-step genomic BLUP with unknown parent groups (UPG) defined for 
A, UPG for H, or metafounders. The box represents the first and third quartiles, the line is the median, the whiskers extend to the furthest 
point up to 1.5 times the interquartile range, and circles are for outliers beyond that distance. 
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most recent UPG to prevent sudden changes in genetic 
trend, especially when validating with reduced data 
(Tsuruta et al., 2014). These results were likely caused 
by inappropriate UPG definitions given the amount of 
information to estimate the UPG effects, particularly 
for the low heritability simulation. Heritability was the 
main difference between the simulations, and the lower 
heritability means that less overall information was 
available from the same number of phenotypes. This 
lack of information seemed to be diminished by the 
combined use of genotypes for animals missing pedigree 
together with metafounders.

When there was not enough information to estimate 
UPG solutions well, a feasible option was to not include 
UPG and just consider the pedigree as missing to have 
accurate predictions for young animals. This situation 
was noticeable for the low-heritability scenario, in 
which no UPG was more accurate and unbiased than 
including UPG for BLUP and ssGBLUP models, but 
ssGBLUP with metafounders was about the same as 
not including UPG (Table 5). Hence, in populations 
with limited genetic trend for low-heritability traits, 
modeling UPG could negatively affect genetic predic-
tions. Attempts to model more UPG also caused erratic 
results in the trait with heritability of 0.3, again caused 
by a lack of information to estimate the UPG solutions. 
Care is needed in defining UPG over time; the same 

UPG definitions were not ideal across traits with dif-
ferent heritability.

For ssGBLUP with UPG for H, one issue is the UPG 
solutions depend on G. Theoretically, the relationships 
in G are based on identity by state and are based on 
SNP distributed throughout the genome. Thus, rela-
tionships in G were complete and unaffected by missing 
pedigree relationships. The contribution from G could 
be ignored in the UPG solutions with the left-hand-side 
of the mixed model equations:
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This model was tested but preliminary results did not 
improve over ssGBLUP with UPG for H (unpublished 
data). In ssGBLUP with UPG for H, UPG solutions 
and EBV still depend on G A− −−1

22
1, meaning that dis-

crepancies between these matrices affected predictions. 
Even if the matrices were scaled to look similar, A22 
still had missing pedigree relationships; A22 was created 
without accounting for any missing pedigrees. Care is 
needed to ensure that A22 and G are on the same base 
(Vitezica et al., 2011). This requirement was automati-
cally fulfilled by using metafounders, which forced 
A(Γ)22 to be on the same base as G. Research is 
needed to include UPG in A22 to better match G and 
A22 and to potentially have more stable UPG solutions. 
This approach may be more similar to using meta-
founders.

It is unclear why UPG for A worked well in some 
cases and UPG for H worked well in other cases. In 
general, G is not affected by pedigree but is affected by 
line or breed differences (Plieschke et al., 2015) and A22 
is affected by both missing pedigree (and subsequently 
unaccounted for inbreeding) and line or breed differ-
ences. Therefore, formulas for UPG in ssGBLUP do 
not need to include G for purebred populations, and 
they do not need to include A22 if all genotyped ani-
mals have complete pedigree. In the Nordic population 
where UPG for H worked well, few pedigrees were miss-
ing, and accounting for the country (line) differences 
were important (Matilainen et al., 2016). The study by 
Misztal et al. (2017) used only genotypes for animals 
born up to 2014 with nearly complete pedigrees. In 
contrast, Masuda et al. (2018) used genotyped animals 
born up to 2015 with many incomplete pedigrees. Al-

Figure 2. Estimated breeding values from single-step genomic 
BLUP with unknown parent groups (UPG) for H and with meta-
founders for genotyped animals with 2 generations of complete pedi-
gree, missing dam, and missing maternal granddam (MGD).
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though the optimal method for UPG seems to be based 
on metafounders, a simpler method is currently under 
investigation.

The best approach to model UPG will likely be 
situation-dependent because what works best in dairy 
with missing pedigrees across time might not work best 
in swine with breed- or line-specific missing pedigrees. 
This simulation contained many simplifying assump-
tions with only dams missing and all females being 
phenotyped. Dairy populations have more complicated 
missing pedigree structures in addition to imported 
genetics that may have limited available pedigree and 
phenotypic information. When both parents were miss-
ing and UPG were defined by sex, the UPG effects 
could be confounded. The UPG definitions needed to 
balance genetic trend with the amount of phenotypic 
information to estimate these effects.

CONCLUSIONS

Much information was needed to estimate UPG 
solutions well. In our simulation, one UPG definition 
worked well with a moderately heritable trait but not 
with a lowly heritable trait. The best solution was to 
include metafounders to model missing pedigrees and 
to provide reasonable predictions of the genetic trend. 
If metafounders were not used and limited information 
was available to estimate UPG effects, the best ap-
proach was to not model the missing pedigree to obtain 
accurate predictions for young animals. In some cases 
with poor modeling of UPG, biases were 3 genetic SD 
for UPG solutions. More research is needed on the ap-
plication of ssGBLUP to different types of populations 
with missing pedigrees.
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