
1620

J. Dairy Sci. 103:1620–1631
https://doi.org/10.3168/jds.2019-16634
© American Dairy Science Association®, 2020.

ABSTRACT

Genomic evaluations are useful for crossbred as well 
as purebred populations when selection is applied to 
commercial herds. Dairy farmers had already spent 
more than $1 million to genotype over 32,000 crossbred 
animals before US genomic evaluations became avail-
able for those animals. Thus, new tools were needed 
to provide accurate genomic predictions for crossbreds. 
Genotypes for crossbreds are imputed more accurately 
when the imputation reference population includes 
purebreds. Therefore, genotypes of 6,296 crossbred 
animals were imputed from lower-density chips by 
including either 3,119 ancestors or 834,367 genotyped 
animals in the reference population. Crossbreds in 
the imputation study included 733 Jersey × Holstein 
F1 animals, 55 Brown Swiss × Holstein F1 animals, 
2,300 Holstein backcrosses, 2,026 Jersey backcrosses, 
27 Brown Swiss backcrosses, and 502 other crossbreds 
of various breed combinations. Another 653 animals 
appeared to be purebreds that owners had miscoded 
as a different breed. Genomic breed composition was 
estimated from 60,671 markers using the known breed 
identities for purebred, progeny-tested Holstein, Jersey, 
Brown Swiss, Ayrshire, and Guernsey bulls as the 5 
traits (breed fractions) to be predicted. Estimates of 
breed composition were adjusted so that no percentages 
were negative or exceeded 100%, and breed percentages 
summed to 100%. Another adjustment set percentages 
above 93.5% equal to 100%, and the resulting value 
was termed breed base representation (BBR). Larger 
percentages of missing alleles were imputed by using 
a crossbred reference population rather than only the 

closest purebred reference population. Crossbred pre-
dictions were averages of genomic predictions computed 
using marker effects for each pure breed, which were 
weighted by the animal’s BBR. Marker and polygenic 
effects were estimated separately for each breed on the 
all-breed scale instead of within-breed scales. For cross-
breds, genomic predictions weighted by BBR were more 
accurate than the average of parents’ breeding values 
and slightly more accurate than predictions using only 
the predominant breed. For purebreds, single-trait pre-
dictions using only within-breed data were as accurate 
as multi-trait predictions with allele effects in different 
breeds treated as correlated effects. Crossbred genomic 
predicted transmitting abilities were implemented by 
the Council on Dairy Cattle Breeding in April 2019 and 
will aid producers in managing their breeding programs 
and selecting replacement heifers.
Key words: genomic evaluation, multiple breed, 
crossbreeding, imputation

INTRODUCTION

Breed composition of the dairy herd has changed 
during the past decade, and numbers of crossbred 
cows have increased to more than 200,000 (greater 
than 5%) of the 3.9 million US milk-recorded cows in 
2017 (Norman et al., 2018). The changes are due to 
increased emphasis on fertility and health traits, shifts 
in demand and pricing for various milk products (e.g., 
increased cheese consumption), and active promotion 
of additional European breeds. Several US dairy breed 
organizations have developed programs to enroll cattle 
not traditionally eligible for registry within their breed. 
Genomic tools can help verify or discover the ancestry 
and predict the genetic merit of both purebreds and 
crossbreds. Dairy herd owners had already spent over 
$1 million genotyping more than 32,000 crossbred ani-
mals before US genomic evaluations were provided for 
crossbreds.

Most genomic evaluations of dairy cattle are sepa-
rate by breed, and crossbreds usually are not included 
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except for the multibreed evaluation in New Zealand 
(Winkelman et al., 2015). Some genetic evaluations 
include combinations of closely related breeds (Zhou 
et al., 2014) or subpopulations within breeds that were 
separate for many generations (Thomasen et al., 2013). 
Many research studies have combined data from differ-
ent pure breeds to improve marker estimates, but most 
gains were small and have not yet been implemented in 
routine national evaluations (Karoui et al., 2012; Olson 
et al., 2012; Makgahlela et al., 2013; Hozé et al., 2014; 
Lund et al., 2014; Kemper et al., 2015).

Genomic breed composition (GBC) of crossbreds 
can be estimated accurately using all SNP markers 
instead of selecting a set of specific markers (VanRaden 
et al., 2011; Hulsegge et al., 2013). In 2016, an adjusted 
GBC termed as breed base representation (BBR) was 
developed using all US genotyped animals (VanRaden 
and Cooper, 2015; Norman et al., 2016). The BBR es-
timates percentages of DNA contributed to a crossbred 
animal by each of the pure breeds.

Previous US genomic evaluations excluded the 
genotypes of many crossbred animals. The crossbred 
genotypes were removed based on counts of breed check 
markers that were monomorphic only in 1 breed and 
had fewer than 30% of animals homozygous for that 
allele in another breed (Wiggans et al., 2010). Reasons 
to exclude crossbred genotypes were that imputation of 
crossbred genotypes from low marker densities may not 
be accurate using only a single-breed reference popula-
tion, marker effects estimated within a pure breed may 
not be appropriate for crossbreds, and parent averages 
(PA) are incomplete or incorrect if PTA of both par-
ents are not on the same scale.

Multibreed genomic models that include crossbreds 
require first computing multibreed traditional pedigree-
based genetic evaluations. Routine US multibreed 
pedigree-based evaluations were implemented for calv-
ing ease in 2005 (Cole et al., 2005); yield traits, produc-
tive life, SCS, and daughter pregnancy rate in 2007 

(VanRaden et al., 2007); heifer and cow conception 
rates in 2013 (VanRaden et al., 2014); cow livability in 
2016 (VanRaden et al., 2016); and gestation length in 
2017 (Wright and VanRaden, 2017). Multibreed animal 
models are not applied to conformation traits because 
breed associations measure different traits using differ-
ent definitions and scales. Thus, genomic predictions 
for conformation traits of crossbreds could use only 
data from the nearest pure breed.

The goals of this study were to develop genomic 
predictions for crossbreds and to analyze breed com-
position categories of the genotyped crossbreds by (1) 
computing BBR for all animals with genotypes in the 
national database, (2) comparing imputation strategies 
for crossbreds, (3) evaluating crossbreds using marker 
effects for each pure breed weighted by BBR, (4) test-
ing accuracy of crossbred predictions using truncated 
data to predict later data, and (5) testing accuracy of 
single-trait versus multi-trait predictions with marker 
effects for different breeds considered to be correlated.

MATERIALS AND METHODS

Data

Genotypes of crossbred animals were examined for 
potential inclusion in the routine US genomic evalua-
tion with new methods and edits. Previously, animals 
had been excluded if they had (1) a pedigree sire or dam 
of another breed, (2) more than 40% of breed check 
markers not from the evaluation breed for medium- or 
high-density genotypes (≥50,000 markers) or more than 
20% for low-density genotypes, or (3) a genotype iden-
tified as from a completely different breed. Numbers of 
crossbreds that were included in or excluded from the 
evaluation and numbers of animals in each evaluation 
breed as of August 2016 are shown in Table 1. Genomic 
predictions were computed separately for Ayrshires 
(AY), Brown Swiss (BS), Guernseys (GU), Holsteins 
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Table 1. Numbers of bulls and cows in reference populations for the August 2016 US genomic evaluation and 
total numbers of genotyped animals by breed

Breed

Reference population
All genotyped  

animalsBulls Cows

Holstein 34,566 271,110 1,376,340
Jersey 4,898 55,944 187,496
Brown Swiss 6,494 2,056 26,093
Ayrshire 763 204 5,941
Guernsey 458 626 2,722
Crossbred with breed base representation <90%    
 Included in genomic evaluation 323 3,345 34,678
 Excluded from genomic evaluation 0 0 19,490
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(HO), and Jerseys (JE). Some imputation and breed 
composition tests for crossbreds used an earlier 2015 
subset of the 2016 data.

Data set 1 included information from 834,367 pure-
bred and crossbred animals that had been genotyped 
as of March 2015 to test whether the 6,296 crossbreds 
that had been excluded from routine evaluation should 
be evaluated together with all purebreds (full data) or 
separately (partial data). The partial pedigree file of the 
crossbreds included 79,235 animals, but only 3,119 an-
cestors of the crossbreds had genotypes, and those were 
included to improve imputation accuracy. From the full 
data, percentages of imputed alleles based on purebred 
or all-breed reference populations were compared for 
approximately 6,000 crossbreds that had already been 
evaluated as purebreds. Testing the accuracy of im-
putation was difficult because few crossbreds had full 
genotypes observed. Instead, percentages of missing al-
leles that were not imputed were reported. For genomic 
prediction, allele frequencies are substituted for any 
alleles that remain missing after imputation.

Data set 2 included information from 1,562,760 ani-
mals that had been genotyped as of August 2016, as 
well as their truncated phenotypes from before Decem-
ber 2012, to test accuracy of predictions for crossbred 
cows with phenotypes in August 2016 but not in 2012. 
Numbers of each breed and crossbreds in data set 1 and 
in the truncated data were proportional to those in data 
set 2, except that GU marker effects were not available 
in data set 1. Numbers of genotyped crossbreds have 
increased rapidly to a total of 74,619 as of May 2019 
(Figure 1) but are still only about 2% of all genotyped 
animals, which now total more than 3 million.

Genomic Breed Composition

For each animal in data set 1, GBC was estimated 
using 60,671 markers after imputation with Findhap, 
version 3 (VanRaden et al., 2015). Only 33 of the 
excluded crossbred animals had genotypes from chips 
with 50,000 markers or more; the other 99.5% had 
genotypes from a variety of lower-density chips with 
3,000 to 13,000 usable markers. Marker effects to pre-
dict breed percentage as a trait were estimated using 
genotypes of progeny-tested purebred bulls from each 
of 4 breeds (AY, BS, HO, and JE). To predict the breed 
contributions, phenotypes were assigned as 100% or 0% 
according to the reported breed; for example, to predict 
percentage of JE genes, JE purebred bulls received 100 
as phenotype, and their AY, BS, and HO contributions 
were set to 0 (VanRaden et al., 2011). Marker effects 
for GBC were then estimated using the same software 
as for all other traits. A simpler analysis used only 4 
phenotypic observations (100 or 0) and each breed’s 
allele frequencies instead of individual reference bulls to 
estimate marker effects for predicting GBC.

For BBR, the purebred reference populations are 
each breed’s AI bulls that have daughters with milk 
evaluations. Any bull with another breed recorded in 
its 5-generation pedigree was excluded from the pure-
bred reference population. An exception was that bulls 
included in the AY reference population were permitted 
to have ancestors from other red dairy cattle breeds, 
because the AY analysis included all red dairy cattle 
breeds (except red and white HO) as if they were 1 
breed. After initial tests with the 4 breeds, GU was 
added as a fifth breed in 2016, when sufficient GU 
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Figure 1. Frequency of crossbred genotypes received by year from 2008 through May 2019.
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genotypes to form a purebred reference population 
were available in the national collaborator database 
maintained by the Council on Dairy Cattle Breeding 
(CDCB; Bowie, MD).

Genomic estimates of breed composition from mul-
tiple regressions can exceed 100% for a given breed or 
be negative for some breeds. For purebreds, expected 
and average GBC equal 100% for the declared breed 
and 0% for other breeds, but some individual animals 
fluctuate around those values because of genomic varia-
tion. This is similar to genomic inbreeding becoming 
negative for animals less related than the average for 
base animals. Generally, the most popular animals 
within a breed may exceed 100% GBC because they 
have more of the alleles used to differentiate the breeds.

The adjustments for BBR force genomic estimates 
for each animal to sum to 100%, with no estimates 
lower than 0% or higher than 100%. The adjustments 
limit estimates to be within the parameter space as in 
Martínez et al. (2018), simplify interpretation, and pro-
vide better weights to combine marker effects for traits 
with phenotypes; however, all ancestors are assumed to 
be from breeds that have a GBC reference population. 
The mathematical steps for adjusting GBC to obtain 
BBR are as follows: (1) sum GBC across breeds; (2) 
adjust GBC mean by subtracting from each GBC value 
the sum of GBC divided by number of breeds (Nb); (3) 
obtain the range of adjusted GBC from maximum ad-
justed breed GBC and minimum adjusted breed GBC; 
(4) compute an adjustment for standard deviation (SD) 
if any adjusted GBC are higher than 100 or lower than 
0: maximum of
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and (6) round BBR to 100% for animals with a BBR 
of 94% or higher and set contributions from all other 
breeds to 0%. Thus, animals with contributions of less 
than 6% from other breeds were assumed to be pure-
bred.

For step 4, an example animal may have a largest 
adjusted GBC of 103 and smallest adjusted GBC of 
−3 with Nb = 5. Then, SD is calculated as max (83/80, 
23/20) = 1.15. Step 5 preserves the sum of 100% so that 
another mean adjustment is not needed after reducing 
the range of BBR values to be within the parameter 
space of 0 to 100%.

Genomic Prediction for Crossbreds

Marker effects that had been estimated using an ap-
proximate BayesA algorithm (VanRaden, 2008) were 
already available from the national genomic evaluation 
for each breed and phenotypic trait. These were com-
puted using deregressed evaluations for each trait from 
the traditional pedigree-based evaluations after adding 
international evaluations and recomputing PA, and 
then a blending step combined genomic and traditional 
evaluations to reduce bias and capture information 
from non-genotyped ancestors (VanRaden et al., 2009).

To compute the genomic PTA (GPTA) for a cross-
bred, first a GPTA is obtained from each breed’s marker 
effects and then those GPTA are weighted by BBR. 
Strandén and Mäntysaari (2013) proposed a similar 
random regression approach but used pedigree breed 
composition (PBC) rather than BBR to weight marker 
effects. These methods require all input data to be on 
the same all-breed scale, whereas national evaluations 
often define separate breed bases by setting average 
PTA to 0 for current animals within each breed. The 
GPTA were converted to the published within-breed 
scales as a postprocessing step, as in VanRaden et al. 
(2007). Estimates of marker effects included both do-
mestic and foreign sire PTA from the multi-trait across-
country evaluation of Interbull (Uppsala, Sweden). The 
PTA from foreign dams that had been converted from 
the within-breed to the all-breed base as a preprocess-
ing step were used in PA, but only domestic cows had 
their PTA used in SNP effect estimation, to prevent 
selection bias.

Instead of weighting marker effects by BBR, GPTA 
were computed for each of the genomic breeds and then 
weighted by BBR. Within each breed, the SNP effects, 
intercept, and polygenic effects were summed, combined 
with the traditional PTA and subset PTA using a 3-part 
selection index as in VanRaden et al. (2009), and then 
weighted across breeds by BBR. An advantage for this 
approach was that polygenic effects from each breed 
were also weighted by BBR. As in the national evalua-
tion, polygenic effects were assumed to contribute 10% 
of additive genetic variance. Also, imputation leaves 
about 1% of alleles missing, and those were filled using 
frequencies from each breed before weighting by BBR. 

VanRaden et al.: GENOMIC PREDICTIONS FOR CROSSBREDS
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The genomic inbreeding and genomic future inbreeding 
(GFI) of crossbreds were obtained from the all-breed 
genomic relationship matrix initially, but later each 
crossbred’s GFI was obtained only from its relationship 
to the breed of evaluation, because GFI measures half 
of its average genomic relationship to purebred mates. 
A crossbred whose sire and dam share some ancestors 
from the same breed has inbreeding from that breed.

Accuracy of GPTA was compared with that of PA 
using the crossbreds in data set 2. Regression was used 
to predict later deviations for yield (milk, fat, and 
protein), SCS, productive life, and fertility (daughter 
pregnancy, heifer conception, and cow conception 
rates) traits from earlier GPTA or PA. For milk yield, 
separate regressions and squared correlations were also 
estimated for 3 BBR categories of crossbreds based on 
BBR of the primary breed: 50 to 74%, 75 to 89%, and 
90 to 100%. Very few crossbreds had a BBR of less 
than 50% for every breed. The truncation test included 
only US phenotypes (no multi-trait across-country 
evaluations) and excluded HO cows from the GPTA 
reference population to reduce computation and im-
prove convergence of SNP effect estimates when testing 
multi-trait models. Because conformation traits and 
calving traits (calving ease and stillbirth) do not have 
an all-breed scale, crossbred GPTA for those traits used 
only marker effects from the animal’s evaluation breed. 
A GPTA or PTA is needed for each trait to calculate 
selection index rankings.

Multi-Trait Modeling

Accuracy of multi-trait models that treated marker 
effects as correlated across all 5 breeds were compared 
with single-trait models that estimated marker effects 
independently within each breed. Correlations among 
marker effects for all pairs of different breeds were set 
to 0.3 or 0.5 as Olson et al. (2012) had performed for 3 

breeds, and then multi-trait GPTA were compared with 
GPTA from the single-trait model with correlations set 
to 0. The multi-trait test used data set 2. Correlations 
of 2015 truncated predictions with 2017 deregressed 
evaluations were examined to verify whether purebred 
bull GPTA were more accurate when marker effects 
included correlated information from other breeds.

RESULTS

GBC

Breed composition is more accurately determined us-
ing genotypes than pedigrees because BBR estimates 
the differences caused by Mendelian sampling and be-
cause pedigrees often are partially missing or incorrect. 
For example, 1,024 animals had a GBC of greater than 
90% purebred but also had 1 parent recorded as being 
from a different breed. For another 133 animals that 
were more than 90% purebred, breed code differed from 
genomic breed, which indicated possible sample switch-
es. Crossbred categories were defined as F1 animals 
with greater than 40% BBR from 2 breeds, backcrosses 
with greater than 67% but less than 90% BBR from 1 
breed, and other crossbreds of various combinations. 
The crossbreds in data set 1 included 733 JE × HO F1 
animals, 55 BS × HO F1 animals, 2,300 HO backcrosses, 
2,026 JE backcrosses, 27 BS backcrosses, and 502 other 
crossbreds (Table 2). Many HO animals from Mexico 
and Chile were counted as HO backcrosses with about 
10% contribution each from AY, BS, and JE, which 
may indicate local ancestors from other populations or 
breeds (such as Bos indicus cattle).

Mean GBC for the 834,367 animals in data set 1 was 
85.7% for HO, 11.5% for JE, 2.3% for BS, and 0.5% for 
AY; mean PBC was nearly the same as GBC (Table 3). 
Mean BBR for each breed was similar to breed means 
for GBC and PBC, but the BBR means had a slightly 
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Table 2. Crossbred categories as defined by breed base representation (BBR) and numbers of animals that 
had been excluded by breed check edits in data set 11

Crossbred  
category  BBR definition  Breed

Animals  
excluded (no.)

F1  >40% of both breeds  Jersey × Holstein 733
    Brown Swiss × Holstein 55
Backcross  >67% but <90%  Holstein 2,300
    Jersey 2,026
    Brown Swiss 27
Other cross  Not included above  — 502
Purebred  >90% of identified breed  — 1,024
Wrong breed  <20% of identified breed  — 133
All animals  Excluded by breed check  — 6,800
1834,367 purebred and crossbred animals genotyped as of March 2015.
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reduced range compared with the GBC means. Step 5 of 
the BBR adjustment causes this slightly reduced range 
by adjusting GBC coefficients toward 100/Nb so that 
BBR ranges between 0 and 100%. Lowest GBC were 
−3 to −8%, whereas highest GBC were 104 to 110%. 
Correlations of GBC with PBC were high (≥0.99), and 
correlations of GBC with BBR were even higher. Cor-
relations of GBC with PBC for only crossbreds were 
much lower and ranged from 0.72 for AY to 0.87 for JE 
(data not shown).

Estimates of GBC from partial and full data set 1 
were very similar, which implied that genotypes were 
imputed consistently even when fewer purebred animals 
were included. Thus, GBC could be computed fairly 
quickly after imputing from partial data or eventually 
with imputation of all animals together. Estimates of 
GBC using only breed allele frequencies gave similar 
overall statistics for crossbreds, but many individual 
purebred animals were not accurately estimated. An-
other possibility would be to estimate breed composi-
tion directly without imputation using only the 6,909 
markers in common among most genotyping chips, but 
a previous study (VanRaden et al., 2011) found that 

using 3,000 markers resulted in lower accuracy than 
using 43,000 markers.

Genomic Prediction for Crossbreds

Crossbred GPTA obtained as averages of purebred 
marker effects weighted by BBR were correlated by 
only about 0.91 to GPTA obtained from a common 
set of marker effects for all breeds. For young purebred 
animals, correlations of GPTA with official GPTA were 
also low (<0.9) when all breeds had to share 1 com-
mon set of marker effects, as previously reported by 
Olson et al. (2012). In contrast, the weighted GPTA 
within each breed were correlated by 0.98 to 0.99 to the 
single-breed official GPTA for all breeds except AY, 
for which the correlation was 0.93. Thus, weighting by 
BBR retains information within each pure breed while 
allowing crossbreds to share that information.

Accuracy of GPTA was higher than that of PA (Table 
4) for crossbred cows using truncated data from 2012 
to predict later phenotypes in 2016 (data set 2) for all 
traits except productive life. Separate regressions for 
the 3 BBR categories of crossbreds (Table 5) suggest 
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Table 3. Means, minimums, and maximums of genomic breed composition (GBC), pedigree breed composition 
(PBC), and breed base representation (BBR; adjusted GBC) across all animals in data set 11

Statistic  
Breed composition  
measure Holstein Jersey

Brown  
Swiss Ayrshire

Mean (%)  GBC 85.7 11.5 2.3 0.5
  PBC 85.7 11.5 2.2 0.5
  BBR 84.3 11.7 2.7 0.9
Minimum (%)  GBC −8 −3 −4 −3
  BBR 0 0 0 0
Maximum (%)  GBC 106 108 104 110
  BBR 100 100 100 100
Correlation  GBC, PBC 0.996 0.996 0.998 0.990
  GBC, BBR 0.999 0.999 0.999 0.997
1834,367 purebred and crossbred animals genotyped as of March 2015.

Table 4. Regressions and squared correlations of later deviation on earlier prediction for crossbred cows in data set 21

Trait
Cows 
(no.)

Regression coefficient ± SE

 

Squared correlation

Genomic PTA Parent average Genomic PTA Parent average

Milk yield 10,124 0.95 ± 0.01 0.83 ± 0.01  0.46 0.41
Fat yield 10,124 1.04 ± 0.02 0.91 ± 0.02  0.23 0.18
Protein yield 10,124 0.97 ± 0.02 0.84 ± 0.02  0.26 0.22
Productive life 6,149 0.90 ± 0.11 0.70 ± 0.11  0.01 0.01
SCS 9,984 1.16 ± 0.04 1.02 ± 0.05  0.07 0.04
Daughter pregnancy rate 12,854 1.06 ± 0.07 0.65 ± 0.07  0.02 0.01
Cow conception rate2 — 0.613 0.703  0.13 0.11
Heifer conception rate2 — 0.393 0.373  0.12 0.09
11,562,760 animals genotyped as of August 2016 as well as their truncated phenotypes from before December 2012.
2Dependent variable was deregressed PTA instead of deviation.
3SE not available.
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that the methods perform equally well at 50% BBR, 
75% BBR, and 90% BBR. Results in Tables 4 and 5 
were based only on crossbreds that had failed breed 
checks.

For animals that had passed breed checks and already 
had genomic evaluations in the within-breed system, 
the use of either a crossbred reference population or the 
closest purebred reference population was compared. 
Accuracy of weighting GPTA by BBR was tested us-
ing the same set of genotypes imputed based on the 
all-breed reference population (Table 6). Only results 
for crossbreds with a BBR of less than 94% were com-
pared, because animals with a higher BBR are treated 
as purebreds. Accuracy of genomic prediction slightly 
favored the use of a crossbred over purebred reference 
population for animals with a BBR of less than 94%.

Truncation tests that included JE crossbreds with a 
BBR of less than 94% instead of only crossbred cows 
previously excluded from evaluation by breed check 
SNP showed that regression coefficients for weighted 
GPTA generally were closer to 1 than were those for 
single-breed GPTA (Table 6). Squared correlations 
for weighted GPTA ranged from 0.223 to 0.271 and 
were only slightly higher than squared correlations for 
single-breed GPTA, which ranged from 0.216 to 0.262 
for the JE crossbreds with BBR of 50 to 87%. How-
ever, squared correlations showed no advantage when 
crossbreds with BBR of 75 to 94% were included, be-

cause most of those had small contributions from other 
breeds. Too few crossbreds with BBR of 50 to 74% had 
been evaluated as purebreds to test that subset sepa-
rately. The squared correlations in both subsets were 
much higher for GPTA than for PA. Thus, the GPTA 
for currently evaluated crossbreds were quite reliable 
but could be improved slightly by weighting by BBR.

Multi-Trait Models

For yield traits, reliability gains over PA (Table 7) 
were similar for GPTA based on multi-trait and single-
trait models for HO and JE, but some multi-trait gains 
were slightly larger for AY, BS, and GU. The reliability 
gains over PA for AY and BS were much lower than in 
routine evaluations, because most reference bulls for 
those breeds are foreign and this study included only 
US data.

DISCUSSION

More breeders now genotype their whole herds and 
may expect evaluations for all genotyped animals in 
the future. Numbers of genotyped F1 crossbreds may 
still be too few to estimate crossbred performance, 
including interactions of marker effects contributed 
by different breeds as a trait separate from purebred 
performance, but theoretical studies have developed 
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Table 5. Regressions and squared correlations of later milk yield deviation on earlier prediction by breed base representation (BBR) category 
for crossbred cows in data set 2 not previously evaluated1

BBR category 
(% of primary breed)

Cows 
(no.)

Regression coefficient ± SE

 

Squared correlation

Genomic PTA Parent average Genomic PTA Parent average

50 to 74 2,303 1.07 ± 0.03 0.78 ± 0.03  0.35 0.22
75 to 89 3,412 0.94 ± 0.02 0.83 ± 0.02  0.52 0.18
90 to 100 4,370 0.91 ± 0.02 0.82 ± 0.02  0.45 0.39
All crossbreds 10,124 0.95 ± 0.01 0.83 ± 0.01  0.46 0.41
11,562,760 animals genotyped as of August 2016 as well as their truncated phenotypes from before December 2012.

Table 6. Regressions and squared correlations of later yield deviations on earlier genomic PTA predicted using weighted (crossbred) or purebred 
Jersey marker effects or on parent average for Jersey crossbreds in data set 21

Breed base representation  
category  

Yield  
trait

Regression coefficient

 

Squared correlation

Genomic PTA
Parent 
average

Genomic PTA
Parent 
averageCrossbred Purebred Crossbred Purebred

75 to 94% (n = 5,323) Milk 0.76 0.72 0.73  0.217 0.215 0.129
Fat 0.98 0.92 1.02  0.210 0.210 0.140

 Protein 0.82 0.77 0.89  0.169 0.169 0.115
50 to 87% (n = 1,089) Milk 0.93 0.85 0.87  0.271 0.262 0.155

Fat 1.09 0.97 1.06  0.247 0.242 0.146
 Protein 1.01 0.90 1.09  0.223 0.216 0.141
11,562,760 animals genotyped as of August 2016 as well as their truncated phenotypes from before December 2012.
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methods that could be applied in populations where 
crossbreeding is more routine (Zeng et al., 2013; Chris-
tensen et al., 2014; Esfandyari et al., 2015). In tropi-
cal climates, composite breeds with both indicine and 
taurine ancestry are common, which increases the need 
for proper modeling of crossbreds (Cole and da Silva, 
2016). Single-step evaluations could also be applied to 
crossbred populations (Pocrnic et al., 2019).

Other advantages of genomic testing are providing 
parentage verification and revealing pedigree errors. 
Earlier research showed that if the sire, maternal 
grandsire, or even maternal great-grandsire were not 
identified, these could be discovered in more than 99, 
97, and 92% of HO cases, respectively, when tested 
with BovineSNP50 (Illumina Inc., San Diego, CA) 
markers (VanRaden et al., 2013). This also means that 
substantial information is available for identifying the 
breed composition of ancestors, even if previous on-
farm record keeping was poor.

The BBR percentages can reveal the presence of ei-
ther crossbreeding or outcross bloodlines, but in some 
cases it remains obscure which of these 2 alternatives 
caused the BBR to be lower than 100%. Precise percent-
ages of breed sources are difficult to estimate because 
individual animal genotypes within a breed differ from 
the average allele frequencies for a breed. The BBR 
percentages for every individual are forced to sum to 
100% (regardless of which breeds have reference popu-
lations) even if all genetic contributions are not from 
referenced breeds. Because breeds share some common 
DNA, the estimated percentage for the primary breed 
could differ from the true percentage by 5% or more.

Even animals that have true purebred ancestors for 
many generations often obtain a BBR percentage of 
less than 100% for the primary breed. Cases where the 
primary breed has a BBR of 90 to 97% can reveal the 
presence of outcross bloodlines, but a lower BBR is 
usually evidence of crossbreeding. Likewise, animals 
with 3 grandparents of 1 breed and 1 grandparent of 
another (expected breed alleles 75 and 25%) could eas-
ily have primary breed percentage in BBR be as low as 
70% or as high as 80% because of estimation error, or 
primary breed percentage might deviate even more be-
cause of the random nature by which chromosomes are 
transmitted from grandparents through sire and dam.

Many producers want to see and use BBR despite 
the standard error of estimation. Some producers prefer 
to use bulls free of ancestors of another breed—that 
is, they want animals with pedigrees containing only 
members of the same breed. Some want bulls that will 
allow them to maintain what they consider their opti-
mal mixed-breed composition; they want to capitalize 
on the benefits of heterosis. Still others select bulls to 
transform their herds to an alternate breed within a 
few generations. Regardless of the reason, most produc-
ers want to know an animal’s breed composition when 
making choices.

The more an animal’s genetic makeup resembles 
its purebred reference population, the higher its BBR 
percentage for the primary breed. For example, if an 
animal is an outcross to the current population, its 
calculated percentage of the primary breed could be in 
the mid-90s. Because the reference populations for all 
breeds are updated each year, an animal’s BBR would 
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Table 7. Gains (percentage points) in genomic reliability of purebred bulls1 above parent average reliability using single-trait or multi-trait 
marker effects for breeds in data set 22

Yield trait  Breed
Single-trait 

(correlation = 0.0)

Multi-trait

Correlation = 0.3 Correlation = 0.5

Milk Holstein 27 26 26
 Jersey 16 16 15
 Brown Swiss 6 8 7
 Ayrshire 9 12 12
 Guernsey 18 20 21
Fat Holstein 31 31 —
 Jersey 19 19 —
 Brown Swiss 8 8 —
 Ayrshire 2 6 —
 Guernsey 5 6 —
Protein Holstein 25 25 —
 Jersey 15 15 —
 Brown Swiss −4 −3 —
 Ayrshire 2 5 —
 Guernsey 13 10 —
1Correlation of 2015 truncated predictions with 2017 deregressed evaluations.
21,562,760 animals genotyped as of August 2016 as well as their truncated phenotypes from before December 2012.
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change over time if BBR were recalculated. To minimize 
changes, an animal’s BBR should be updated only for 
large changes that may be caused by re-genotyping at 
higher density, pedigree changes affecting imputation, 
or genotyping of additional close relatives.

Example BBR for animals from different breeding 
systems are shown in Table 8. The BBR presented are 
before rounding of animals with BBR of 94% or more to 
BBR of 100% and setting contributions from all other 
breeds to 0%. The HO cow from a 1964 control line had 
1960s genetics from a University of Minnesota experi-
mental selection project and a relatively low relation-
ship to the current HO population because of changes in 
breed allele frequencies over the past half-century. The 
Danish JE cow has alleles that differ somewhat from 
the North American JE population. Other examples in 
the table show various breed crosses, and the example 
for an animal from a breed with no reference population 
shows that genetic contributions from some other breed 
may be evenly distributed among the included breeds 
so that BBR percentages sum to 100. These examples 
illustrate that GBC can be very effective at detecting 
significant percentages of DNA contributed by another 
breed. However, selection decisions should not be made 
without considering that GBC and BBR percentages 
could be off by as much as 5% (and occasionally more), 
especially if crosses involve breeds without a reference 
population. Since April 2016, BBR has been computed 
by CDCB and provided for all genotyped animals.

The development of BBR formed the basis for further 
development of genomic predictions for crossbred ani-
mals. Currently, some crossbreds with a high percent-
age of a single breed do receive predictions; however, 
those predictions can be improved using BBR. Over 
30,000 additional animals already genotyped have a 
moderate percentage of 2 breeds or more but do not 
have genomic predictions. Producer interest in receiv-
ing genetic predictions is growing, especially from those 
with many multibreed animals. Crossbred animals were 
often excluded from receiving genomic evaluations 
based on their pedigree, but BBR provides a more 
precise method of including those animals. Evaluations 

for all animals including crossbreds will reduce breeder 
need to guess whether an animal will pass breed check 
edits and be evaluated before paying for genotyping, 
thus simplifying management decisions.

In a more recent test with more data (not shown), 
differences among percentages of imputed genotypes 
indicated that crossbred genotypes should be imputed 
using a crossbred reference population that includes 
purebred animals as well as crossbreds instead of only 
the closest purebred reference population. Findhap 
software fully imputes a genotype if alleles in both hap-
lotypes are found; if only 1 allele is found, partial im-
putation is performed, and allele frequency is assigned 
to missing alleles. Crossbreds had about 1.5 times more 
missing alleles using a purebred rather than crossbred 
reference population for imputation, and imputation 
with a crossbred reference population resulted in fewer 
missing alleles across all BBR groups of lower than 94% 
(not shown). Differences decreased as BBR increased. 
Accurate imputation of crossbreds may require a mul-
tibreed reference population, because imputing alleles 
from a different breed is difficult without reference 
animals from that breed.

Future strategies for evaluating crossbreds may in-
clude using haplotypes instead of marker regression to 
trace breed of origin (Vandenplas et al., 2016) or to pre-
dict breeding values (Cuyabano et al., 2015; Hess et al., 
2017; Sevillano et al., 2017). Single-step evaluations can 
account for differing allele frequencies among breeds 
(Legarra et al., 2015; Lourenco et al., 2016) and breed 
of origin for each allele (Xiang et al., 2016). However, 
including interactions among breed metafounders may 
be a simpler and more effective strategy (Xiang et al., 
2017). Adding variants selected using an all-breed ref-
erence population can increase prediction accuracy be-
cause of closer linkage to causative effects (Porto-Neto 
et al., 2015; van den Berg et al., 2016a,b). Reliability 
gains from all-breed evaluations of crossbreds can be 
predicted (Vandenplas et al., 2017) but were small in 
the present study, perhaps because most crossbreds 
were JE × HO and both breeds already had large ref-
erence populations. Gains from multi-trait evaluation 
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Table 8. Example estimates of breed base representation (BBR, %) for various breeding systems1

Breeding system HO JE AY BS GU

1964 HO control line cow 93 2 1 3 1
Danish JE cow 1 96 0 2 1
F1 HO × JE 52 48 0 0 0
Backcross JE × (HO × JE) 28 71 1 0 0
Second backcross JE × [JE × (JE × HO)] 15 83 1 0 1
3-breed cross HO × (JE × AY) 47 23 28 0 2
Other breed with no reference population 18 21 20 22 19
1Breeds: AY = Ayrshire; BS = Brown Swiss; GU = Guernsey; HO = Holstein; JE = Jersey. BBR before round-
ing to 100% for animals with ≥94% and setting contributions from all other breeds to 0%.
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of multibreed data were very small for purebred ani-
mals, which was consistent with most previous studies. 
Genomic predictions of purebreds changed little when 
computed on an all-breed rather than a within-breed 
scale.

Crossbred GPTA computed as a weighted average of 
purebred marker effects were implemented by CDCB 
in April 2019. However, 79,276 SNP were used, instead 
of the 60,671 SNP used in this study and for official 
predictions from 2014 until December 2018. The final 
methods used by CDCB excluded animals with a BBR 
of lower than 94% from each breed’s genomic reference 
population and applied BBR weighting only to animals 
with a BBR of lower than 90%. A slight revision to 
BBR rounded any contributions of 1 or 2% down to 
0% and adjusted the remaining breeds up proportion-
ally. In the selection index step that combines genomic 
and traditional PTA, additional weight was placed 
on an animal’s traditional PTA in proportion to its 
traditional reliability because a crossbred’s own data 
do not contribute directly to estimation of allele ef-
fects. Further edits ensured that an animal’s evaluation 
breed matched its primary breed in BBR except for F1 
crossbreds, for which either parent breed was allowed. 
Genotypes of both parents and the maternal grandsire 
were included (if available) whenever imputing cross-
bred genotypes.

Separate marker effects for each breed instead of just 
1 set of marker effects for all breeds should provide 
more accurate GPTA, especially when 1 breed (HO) 
provides nearly 90% of all genotyped animals. Each 
breed’s data can then contribute more directly to 
imputation, marker effect estimation, and prediction, 
instead of being dominated by linkage disequilibrium 
within the major breed. Many previous crossbreeding 
studies simulated or evaluated breeds of equal size. Op-
timum strategies may differ depending on numbers of 
phenotypes, genotypes, and categories of crossbreds in-
cluded. Models that use genomic relationship matrices 
can force off-diagonal blocks among breeds to 0 instead 
of solving directly for separate marker effects by breed 
(Steyn et al., 2019). The methods we developed used 
only phenotypes of purebreds to estimate marker ef-
fects and may not be ideal for other populations or 
species with more phenotypes from crossbreds.

CONCLUSIONS

Breed composition was estimated from genotypes 
after imputing lower-density chips to 60,671 markers 
for all animals in the national database. Imputation for 
crossbreds was improved with a reference population 
that included genotypes from parents and from each 

pure breed. Methods were developed to adjust the initial 
GBC to BBR that was limited to a range of 0 to 100% 
and summed to 100% across breeds. Correlations were 
high between GBC and BBR. Most of the genotyped 
crossbreds were JE × HO backcrosses. Advantages 
of genomic over pedigree estimates of breed composi-
tion are that pedigrees for crossbred animals are often 
incomplete or inaccurate and that actual breed con-
tributions differ from expected because of Mendelian 
sampling. Genomic predictions for crossbreds required 
estimating marker effects on an all-breed base rather 
than within-breed bases, and the crossbred GPTA com-
puted by weighting marker effects for separate breeds 
by BBR were more accurate than predictions from 
single-breed GPTA. A multi-trait model, with marker 
effects for each breed treated as correlated, gave some 
advantage only for smaller breeds. Many thousands of 
crossbred animals are being genotyped because many 
commercial producers now apply genomic selection to 
their whole herds.
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