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Summary

Information about genetic parameters is essential for selection decisions

and genetic evaluation. These estimates are population specific; however,

there are few studies with dairy cattle populations reared under tropical

and sub-tropical conditions. Thus, the aim was to obtain estimates of heri-

tability and genetic correlations for milk yield and quality traits using

pedigree and genomic information from a Holstein population maintained

in a tropical environment. Phenotypic records (n = 36 457) of 4203 cows

as well as the genotypes for 57 368 single nucleotide polymorphisms from

755 of these cows were used. Covariance components were estimated

using the restricted maximum likelihood method under a mixed animal

model, considering a pedigree-based relationship matrix or a combined

pedigree-genomic matrix. High heritabilities (around 0.30) were esti-

mated for lactose and protein content in milk whereas moderate values

(between 0.19 and 0.26) were obtained for percentages of fat, saturated

fatty acids and palmitic acid in milk. Genetic correlations ranging from

�0.38 to �0.13 were determined between milk yield and composition

traits. The smaller estimates compared to other similar studies can be due

to poor environmental conditions, which may reduce genetic variability.

These results highlight the importance in using genetic parameters esti-

mated in the population under evaluation for selection decisions.

Introduction

Estimates of heritability and genetic correlations are

essential for the design of animal breeding programs

and for the prediction of selection response. These val-

ues have been reported for several important traits in

dairy cattle production, such as milk yield, fat and

protein yield, fat and protein percentage, somatic cells

score and more recently, fatty acids content. Never-

theless, genetic parameters are population specific

and studies involving populations under tropical and

subtropical conditions are still rare. A tropical envi-

ronment is characterized by a long hot season, intense

radiant energy and high relative humidity, which can

cause several changes in physiology, anatomy and

behaviour of lactating cows in an effort to maintain

the heat balance (Curtis 1983). Heat stress can reduce

feed intake and activity and increase respiration rate,

peripheral blood flow and sweating, with a resulting

harmful effect on production (West 2003).

These challenging conditions also affect the genetic

variation and, consequently, the prediction of breed-

ing values. In Cienfuegos-Rivas et al. (1999), the vari-

ance components were 40% lower in a Mexican

population than in US environments, with a signifi-

cant rank change of sires. Likewise, Costa et al. (2000)
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observed a reduction in genetic variability in subtropi-

cal regions in comparison with temperate regions.

Therefore, selection decisions will be only correct if

they were based on the information from the actual

population under selection.

Traditionally, genetic parameters are estimated

based on pedigree data. Nowadays, with the wide

availability of genomic information, the genetic simi-

larity between relatives can be determined more accu-

rately, taking into account deviations due to

Mendelian sampling. The use of molecular informa-

tion is most useful when pedigree information is

unavailable and the sample size is limited (Krag et al.

2013). The genomic information can be used by

replacing the traditional relationship matrix based on

pedigree information by a genomic relationship matrix

(VanRaden 2008), that uses exclusively single nucleo-

tide polymorphism (SNP) information, or by a matrix

that combines the genomic and pedigree relationship

information (Aguilar et al. 2010), including animals

with and without genotype records. Studies which

included genomic information for the estimation of

genetic parameters in dairy cattle have obtained an

increase in the accuracy of the estimates (Veerkamp

et al. 2011; Haile-Mariam et al. 2013; Krag et al. 2013).

Therefore, due to the meagre number of studies in

this area, the aim of this study was to estimate genetic

parameters for milk production traits, including fatty

acid composition, using pedigree and genomic infor-

mation in a Holstein cattle population reared under

tropical conditions.

Material and methods

Phenotypes

Monthly records of milk yield (MY; kg), somatic cells

count (SCC), fat percentage (FP, %), protein per-

centage (PP, %), lactose percentage (LP, %), and

palmitic (C16:0), stearic (C18:0), oleic (C18:1), total

saturated (SFA), unsaturated (UFA), monounsatu-

rated (MUFA), and polyunsaturated (PUFA) fatty

acids percentage in milk (%) were collected from first

through sixth parity Holstein cows located on four

Brazilian farms between May of 2012 and December

of 2014. Initially, the number of cows per farm was

3323, 544, 348, and 1003. Three of these farms are

located in S~ao Paulo state, with mean temperatures

varying from 9.1 to 29.4°C and annual rainfall around

of 1500 mm; and one is located in the state of Paran�a,

characterized by temperatures between 8.2 and

27.6°C and annual rainfall of 1971 mm. Cows are

milked three times a day with an automatic milking

system, maintained in freestall barns, and they are fed

a total mixed ration. The main components of the

ration are corn silage, grass hay, cotton seed, soybean

meal, soybean hulls, corn meal, citrus pulp, minerals

and vitamins.

Milk components were determined by mid-infrared

spectroscopy (Delta Instruments CombiScopeTM Filter;

Advanced Instruments, Inc., Norwood, MA, USA;

Rodriguez et al. 2014). A spectra treatment was

performed by the manufacturer itself for fatty acids

determination, but no calibration equations were

developed in this study. The mid-infrared spec-

troscopy method was validated using gas chromatog-

raphy (Rodriguez et al. 2014). The correlations

between the measurements of milk fatty acids

obtained by both methods varied from 0.60 to 0.92

and a bias ranging from �8.65 to 6.91 g/100 g of fat

was estimated by using the Bland–Altman test.

Despite this discrepancy, 94% of the samples were

included within the concordance limits of the Bland–
Altman test, indicating that the methods produced

the same pattern of milk fat composition. Therefore,

they allow similar conclusions about the milk samples

under evaluation. More details regarding this valida-

tion are presented in Rodriguez et al. (2014).

The SFA group considered content of butyric acid

(C4:0), caproic acid (C6:0), caprylic acid (C8:0),

capric acid (C10:0), undecanoic acid (C11:0), lauric

acid (C12:0), tridecanoic acid (C13:0), myristic acid

(C14:0), pentadecanoic acid (C15:0), palmitic acid

(C16:0), margaric acid (C17:0), stearic acid (C18:0),

non-adecylic acid (C19:0), trycosylic acid (C23:0), lig-

noceric acid (C24:0); the MUFA group included the

myristoleic acid (C14:1), cis-10-pentadecenoic acid

(C15:1), palmitoleic acid (C16:1), cis-10-heptadece-

noic acid (C17:1), oleic acid (C18:1x9), elaidic acid

(C18:1x9), vaccenic acid (C18:1x7), non-adecenoic

acid (C19:1), erucic acid (C22:1x9) and nervonic acid

(C24:1), whereas the PUFA group included the lino-

leic acid (C18:2x6), linolenic acid (C18:3x3), linoleic
conjugated acid (c9,t11-CLA), dihomo-c-linolenic
acid (C20:3x3), docosadienoic acid (C22:2) and the

eicosapentaenoic acid (EPA, C20:5). The UFA group

was the sum of MUFA and PUFA cited previously.

The individual fatty acids C16:0, C18:0 and C18:1

were studied because of their importance in milk fat

and potential impact on human health. The palmitic

acid (C16:0) and the oleic acid (C18:1) are the main

saturated and monounsaturated fatty acid of milk,

respectively, with a concentration of 8 g per litre of

milk (Haug et al. 2007). Both C16:0 and C18:1 have

been associated with the levels of blood cholesterol

(Kris-Etherton et al. 1999; Mensink et al. 2003), and
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the C18:1 has been related to protection against

oxidative stressors, atheromatosis and cardiovascular

diseases (Haug et al. 2007). The synthesis of the oleic

acid is strongly dependent on the stearic acid content.

About 40% of the stearic acid is desaturated to oleic

acid by the delta-9 desaturase in the mammary gland,

contributing to more than 50% of the oleic acid

secreted into milk fat (Enjalbert et al. 1998, Chilliard

et al. 2000).

Somatic cells count (SCC) was transformed into

somatic cells score (SCS) using the formula

SCS = Log2(SCC/100 000) + 3 for data normalization

(Aka & Shook 1980). Initially, the SCC in the milk

samples varied from 1000 to 15 974 000 cells per

millilitre of milk.

Data from animals without valid measurements or

with measurements outside the acceptable range

(mean � 3 standard deviations); without calving

date, lactation order and/or age information were

deleted to remove database inconsistency. Records of

animals with days in milk lower than five or higher

than 305, age higher than 9 years, and lactation order

higher than six were also excluded. The descriptive

statistics of the remaining data are presented in

Table 1. There were 2614, 1937, 1135, 565, 242 and

48 cows from first-, second-, third-, fourth-, fifth- and

sixth-lactation, respectively (1188 cows had records

from two or more lactations). The numbers of cows

per farm were 2800, 518, 139, and 746. The number

of measures per cow varied from one to 28 and the

average of measures per lactation per cow was 5.57.

Contemporary groups (CG) were formed by the

combination of calving season [dry (April to Septem-

ber) or rainy (October to March)], calving year based

on start of calving season, farm and month of analysis

information. CG containing fewer than five individu-

als were eliminated. The final data set included

36 457 records from 4203 cows distributed in 298 CG

(Figure 1) and daughters of 226 sires.

Genotypes

Genotypes from 768 of the measured cows were

obtained with Illumina Bovine LD BeadChip (Illu-

mina, San Diego, CA, USA), which has 6909 SNP.

These animals are daughters of 113 sires and they are

represented in 249 CG. The DNA was extracted from

hair root samples by using NucleoSpin Tissue� Kit

(Macherey-Nagel GmbH & Co. KG, D€uren, Germany).

Imputation was used to augment the genotype data

set. The reference population adopted for this imputa-

tion was bulls, sires of these cows, genotyped with the

Illumina BovineSNP50 (Illumina, San Diego, CA,

USA) or GeneSeek Genomic Profiler HD platform

(Neogen Agrigenomics, Lexington, KY, USA). The

software findhap.f90 (VanRaden 2015) was used to

impute to 60.671 SNP based on population and family

information. During this stage, eleven samples with

duplicated genotypes and/or incompatible parent-off-

spring relationship were excluded, leaving 757 sam-

ples in the database. This procedure was performed by

the Animal Genomics and Improvement Laboratory

(Agricultural Research Service, United States Depart-

ment of Agriculture).
Table 1 Number of observations (N), mean, standard deviation (SD),

coefficient of variation (CV, %), minimum (MIN) and maximum (MAX)

obtained for milk yield (MY), somatic cell score (SCS), fat percentage

(FP), protein percentage (PP), lactose percentage (LP), and palmitic

(C16:0), stearic (C18:0), oleic (C18:1), total saturated (SFA), unsaturated

(UFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty

acids content in milk

Trait N Mean SD CV MIN MAX

MY (kg/day) 30 430 34.20 10.076 29.5 5.00 64.00

SCS 34 162 3.06 2.257 73.8 -2.64 10.11

FP (%) 32 952 3.45 0.748 21.7 1.00 6.03

PP (%) 33 195 3.05 0.302 9.9 2.07 4.23

LP (%) 33 051 4.60 0.238 5.2 3.56 5.25

Fatty acids (%)

C16:0 29 731 0.84 0.221 26.2 0.15 1.60

C18:0 29 556 0.61 0.156 25.6 0.10 1.13

C18:1 29 580 0.67 0.214 32.1 0.01 1.40

SFA 29 696 2.23 0.506 22.7 0.61 3.95

UFA 29 606 1.03 0.298 28.8 0.07 2.06

MUFA 29 599 0.87 0.257 30.8 0.04 1.76

PUFA 29 744 0.16 0.049 30.8 0.01 0.32
Figure 1 Distribution of records among contemporary groups (CG).
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Samples with call rate lower than 90% (n = 2) as

well as markers located in sex chromosomes

(n = 1549), with proportion of missing genotypes

higher than 20% (n = 145), monomorphic (n = 102),

and with minor allele frequency lower than 0.02

(n = 1507) were also eliminated, leaving 755 cows

and 57 368 SNP in the genetic analyses.

Genetic analyses

Genetic (co)variance components were estimated by

using a numerator relationship matrix (pedigree-

based approach) and by using a relationship matrix H,

which combined genomic and pedigree information

(genomic and pedigree based approach). For both, the

following univariate genetic model was fitted:

y ¼ Xbþ Zaþ Scþ e ð1Þ
where y is the vector of phenotypic observations; X is

the design matrix for the fixed effects; b is the vector

of fixed effects; Z is the design matrix for the additive

genetic random effects; a is the vector of random addi-

tive genetic effects, which are the sum of genomic and

residual polygenic effects; S is the design matrix for

the permanent environmental random effects; c is the

vector of permanent environmental random effects;

and e is the vector of residual effects, with e ~ NID (0,

Ir2). The vector b included the effects of CG, lactation

order and the cubic effect of days in milk. Also, it was

assumed a ~ N (0, Ar2a) for the pedigree-based

approach, and a ~ N (0, Hr2a) for the combined

approach.

The variance-covariance structure of genotyped

animals in H is built from the genomic relationship

matrix (G) and the relationships of non-genotyped

animals are adjusted in relation to the differences in

genomic and pedigree-based relationships of their

genotyped relatives (Koivula et al. 2012). This way,

the inverse of the matrix H had the following struc-

ture (Aguilar et al. 2010):

H�1 ¼ A�1 þ 0 0

0 G�1
w � A�1

22

� �
; ð2Þ

where A22 is the sub-matrix of A for genotyped

animals, and Gw = wG + (1 � w)A22, with G equal

to the genomic relationship matrix obtained by

VanRaden (2008), and the constant w equal to

0.80, representing the proportion of the total addi-

tive genetic variance accounted by the genetic

markers. The choice of w was based on Christensen

et al. (2012), which found the optimal value of w

as being between 0.70 and 0.85. The pedigree

consisted of 8789 animals, 4197 dams and 576 sires

of 6.85 generations, considering the first generation

as one.

The phenotypic (rp) and genetic (rg) correlations

between traits were estimated through the following

bivariate model:

y1

y2

� �
¼ X1 0

0 X2

� �
b1
b2

� �
þ Z1 0

0 Z2

� �
a1

a2

� �

þ S1 0

0 S2

� �
c1

c2

� �
þ e1

e2

� � ð3Þ

where the vector y1 and y2 refer to the observations

of the first and second traits, respectively; X1 and X2

are the design matrices and b1 and b2 are the vectors

of the fixed effects for the first and second trait,

respectively; Z1 and Z2 are the design matrices and a1
and a2 are the vectors of the random additive genetic

effects; S1 and S2 are the design matrices and c1 and c2
are the vectors of random permanent environmental

effects; and e1 and e2 are the vectors of the residual

effects NID (0, Ir2e ).
The covariance components were estimated using

the restricted maximum likelihood method with an

average information algorithm under models (1) and

(3), using the software AIREMLF90 (Misztal et al.

2002). Standard errors for additive genetic, perma-

nent environmental and residual variance and covari-

ance components were computed as square roots of

diagonal elements of the inverse of the average infor-

mation matrix. Heritability (h2) was calculated as the

ratio of the additive genetic variance to the pheno-

typic variance whereas the proportion of phenotypic

variance due to permanent environmental effects

(c2) was determined as the ratio of permanent

environment variance to the phenotypic variance. For

these functions of variance components as well as for

the genetic and phenotypic correlations, standard

deviations obtained from the repeated sampling

approach were considered as their standard errors

(Meyer & Houle 2013).

Results

The estimates of variance components and heritability

for milk yield and composition traits obtained through

pedigree-based and genomic-based approaches are

given in Tables 2 and 3, respectively, whereas genetic

and phenotypic correlations are shown in Tables 4

and 5. Small differences in these estimates (and their

standard errors) were observed between the methods

used, especially in the univariate analyses. The stan-

dard errors of genetic correlations were lower when
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genotypes were used, with differences between 0.001

and 0.007. This reduction was more evident for the

genetic correlations between SCS and the other

traits, for which the standard errors varied from

0.086 to 0.122 and from 0.081 to 0.115 in pedigree

and genomic-based approaches, respectively. In gen-

eral, the additive variance and genetic correlations

were slightly higher in genomic analyses.

High heritabilities were estimated for PP and LP,

with values greater than 0.30. Moderate estimates

were obtained for FP, SFA, and C16:0, whereas the

other traits had low estimates of heritability, varying

between 0.07 and 0.14. The effect of permanent envi-

ronment was mainly important for MY and SCS, cor-

responding to approximately 0.30 of the phenotypic

variance (Tables 2 and 3).

Negative and moderate genetic correlations were

estimated between MY and milk components, pre-

senting a stronger association with PP (rg = �0.45 and

�0.42) and FP (rg = �0.40 and �0.39). SCS also pre-

sented negative correlations (in this case, favourable)

with MY and milk composition traits, except with the

unsaturated fatty acids (UFA, MUFA, PUFA, and

C18:1); however, these correlations were low and

with high standard errors.

Positive genetic associations were verified among

the milk composition traits. The maximum correlation

was observed between FP and C16:0 (rg = 0.98); FP

and SFA, SFA and C16:0, and UFA and MUFA

(rg = 0.99). The genetic correlations between FP and

the unsaturated fatty acids studied were slightly

lower, but still high, with values ranging from 0.50 to

0.80. As expected, the milk fatty acids were highly

correlated with each other, with the lowest genetic

correlation observed for PUFA and C18:0 (rg = 0.32

and 0.29 from the two analyses).

Protein percentage displayed positive and moderate

to high genetic correlations with the other milk com-

ponents, varying between 0.31 and 0.69. In turn, lac-

tose percentage was positively but weakly correlated

with FP, SFA, C16:0, C18:0 and C18:1 (rg < 0.15);

and moderately correlated with UFA, MUFA, and

PUFA; presenting genetic correlations around 0.25.

Regarding the phenotypic correlations, lower esti-

mates were observed for PP and LP with other traits

(rp < 0.22). On the other hand, larger and positive

estimates were obtained for FP and the studied fatty

acids with other traits. As well as genetic correlation

estimates, MY showed negative and low to moderate

phenotypic correlations with milk composition traits,

except LP (rp = 0.18). In general, SCS presented lower

and positive phenotypic associations with other traits,

but moderate and negative with LP (rp = �0.35).

Discussion

According to Misztal et al. (2013), the gain in accuracy

in genetic prediction due to the addition of genomic

information can be small because the mean difference

between the genomic relationship and the relationship

based on pedigree is generally low. This gain is even

smaller when animals with low individual accuracy

are used, such as animals with their own records only.

However, the inclusion of cows’ genotypes in genetic

Table 2 Variance components, heritability and proportion of the variance due to permanent environmental effects,* and their respective standard

errors (in brackets) obtained through pedigree-based analyses for milk yield (MY), somatic cell score (SCS), fat percentage (FP), protein percentage

(PP), lactose percentage (LP), total saturated (SFA), unsaturated (UFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids, and palmitic

acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1) content in milk

Trait r̂2a r̂2pe r̂2e r̂2p h2 c2

MY (kg/day) 8.424 (1.5036) 19.685 (1.3187) 40.475 (0.3545) 68.584 (0.8999) 0.12 (0.021) 0.29 (0.020)

SCS 0.520 (0.0876) 1.293 (0.0776) 2.482 (0.0204) 4.296 (0.0552) 0.12 (0.020) 0.30 (0.018)

FP (%) 0.096 (0.0097) 0.036 (0.0071) 0.381 (0.0032) 0.514 (0.0057) 0.19 (0.018) 0.07 (0.014)

PP (%) 0.023 (0.0018) 0.007 (0.0012) 0.036 (0.0003) 0.065 (0.0010) 0.35 (0.024) 0.10 (0.019)

LP (%) 0.013 (0.0012) 0.007 (0.0009) 0.024 (0.0002) 0.044 (0.0007) 0.30 (0.025) 0.15 (0.021)

Fatty acids (%)

C16:0 0.0105 (0.00094) 0.0033 (0.00066) 0.0263 (0.00023) 0.0401 (0.00053) 0.26 (0.021) 0.08 (0.017)

C18:0 0.0024 (0.00029) 0.0013 (0.00023) 0.0143 (0.00013) 0.0180 (0.00019) 0.13 (0.016) 0.07 (0.013)

C18:1 0.0024 (0.00039) 0.0019 (0.00033) 0.0290 (0.00026) 0.0333 (0.00031) 0.07 (0.011) 0.06 (0.010)

SFA 0.0570 (0.00518) 0.0189 (0.00367) 0.1520 (0.00135) 0.2279 (0.00293) 0.25 (0.021) 0.08 (0.017)

UFA 0.0051 (0.00081) 0.0033 (0.00067) 0.0577 (0.00051) 0.0661 (0.00061) 0.08 (0.012) 0.05 (0.010)

MUFA 0.0035 (0.00058) 0.0025 (0.00048) 0.0430 (0.00038) 0.0490 (0.00045) 0.07 (0.012) 0.05 (0.010)

PUFA 0.0002 (0.00003) 0.0001 (0.00002) 0.0015 (0.00001) 0.0018 (0.00002) 0.11 (0.014) 0.07 (0.012)

*r̂2a additive genetic variance, r̂2pe permanent environment variance, r̂2e residual variance, r̂2p phenotypic variance, h2 heritability, c2 proportion of

phenotypic variance due to permanent environmental effects.
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evaluation is important to control a possible bias due

to selection (Patry & Ducrocq 2011). Also, these

genotypes can be used to correct pedigree errors.

Tsuruta et al. (2013) reported an increase of 2–3% in

the reliability of genomic breeding values for US final

score through the inclusion of Holstein cows’ geno-

types in the genetic evaluation. In Ding et al. (2013),

the use of 3087 cows genotyped for 48 676 SNP as a

reference population resulted in accuracies between

0.70 and 0.80 in a validation population formed by 67

proven sires.

Nevertheless, in relation to genetic parameters, few

studies assessed the impact of genomic information on

their estimation. Veerkamp et al. (2011) estimated

genetic parameters for milk yield, body weight and

dry matter intake using relationships between animals

based on pedigree, 43 011 SNP, or a combination of

these in a dataset formed by 639 (517 with genotypes)

primiparous Holstein cows. They observed a reduction

in heritability estimates when genomic relationships

were used, possibly due to base and scale differences

between pedigree and genomic-based matrices and

the additional information on the Mendelian sam-

pling component in the genomic matrix. However,

the use of SNP-based relationships improved the

precision of these estimates. In a similar study of

Table 3 Variance components, heritability and proportion of the variance due to permanent environmental effects,* and their respective standard

errors (in brackets) obtained through genomic analyses for milk yield (MY), somatic cell score (SCS), fat percentage (FP), protein percentage (PP), lac-

tose percentage (LP), total saturated (SFA), unsaturated (UFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids, and palmitic acid

(C16:0), stearic acid (C18:0), and oleic acid (C18:1) content in milk

Trait r̂2a r̂2pe r̂2e r̂2p h2 c2

MY (kg/day) 8.589 (1.5098) 19.528 (1.3197) 40.475 (0.3545) 68.591 (0.9010) 0.13 (0.021) 0.28 (0.020)

SCS 0.536 (0.0884) 1.279 (0.0779) 2.482 (0.0204) 4.297 (0.0553) 0.12 (0.020) 0.30 (0.018)

FP (%) 0.097 (0.0096) 0.035 (0.0070) 0.381 (0.0032) 0.514 (0.0057) 0.19 (0.018) 0.07 (0.014)

PP (%) 0.023 (0.0018) 0.006 (0.0012) 0.036 (0.0003) 0.065 (0.0010) 0.35 (0.023) 0.09 (0.019)

LP (%) 0.014 (0.0012) 0.006 (0.0009) 0.024 (0.0002) 0.044 (0.0007) 0.31 (0.025) 0.14 (0.021)

Fatty acids (%)

C16:0 0.0106 (0.00093) 0.0032 (0.00065) 0.0263 (0.00023) 0.0401 (0.00053) 0.26 (0.021) 0.08 (0.017)

C18:0 0.0024 (0.00029) 0.0013 (0.00023) 0.0143 (0.00013) 0.0180 (0.00019) 0.14 (0.016) 0.07 (0.013)

C18:1 0.0025 (0.00039) 0.0018 (0.00033) 0.0290 (0.00026) 0.0333 (0.00031) 0.07 (0.011) 0.06 (0.010)

SFA 0.0576 (0.00515) 0.0183 (0.00364) 0.1520 (0.00135) 0.2279 (0.00293) 0.25 (0.021) 0.08 (0.016)

UFA 0.0053 (0.00081) 0.0031 (0.00066) 0.0577 (0.00051) 0.0661 (0.00061) 0.08 (0.012) 0.05 (0.010)

MUFA 0.0036 (0.00058) 0.0024 (0.00048) 0.0430 (0.00038) 0.0490 (0.00045) 0.07 (0.012) 0.05 (0.010)

PUFA 0.0002 (0.00003) 0.0001 (0.00002) 0.0015 (0.00001) 0.0018 (0.00002) 0.11 (0.014) 0.06 (0.012)

*r̂2a additive genetic variance, r̂2pe permanent environment variance, r̂2e residual variance, r̂2p phenotypic variance, h2 heritability, c2 proportion of

phenotypic variance due to permanent environmental effects.

Table 4 Phenotypic correlations (above diagonal), genetic correlations (below diagonal) obtained through pedigree-based analyses for milk yield

(MY), somatic cell score (SCS), fat percentage (FP), protein percentage (PP), lactose percentage (LP), total saturated (SFA), unsaturated (UFA), monoun-

saturated (MUFA), and polyunsaturated (PUFA) fatty acids, and palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1) content in milk*

MY SCS FP PP LP SFA UFA MUFA PUFA C16:0 C18:0 C18:1

MY �0.24 �0.06 �0.26 0.18 �0.06 �0.04 �0.03 �0.03 �0.09 �0.06 �0.01

SCS �0.13 0.04 0.20 �0.35 0.02 0.06 0.06 0.07 0.06 0.02 0.01

FP �0.40 0.00 0.16 0.02 0.95 0.83 0.83 0.71 0.90 0.82 0.81

PP �0.45 �0.04 0.55 0.04 0.15 0.10 0.08 0.22 0.13 0.05 0.03

LP �0.21 �0.22 0.14 0.39 0.03 0.01 0.00 0.00 0.01 0.01 0.01

SFA �0.36 �0.08 0.99 0.47 0.13 0.70 0.70 0.59 0.96 0.78 0.68

UFA �0.34 0.11 0.78 0.55 0.26 0.66 1.00 0.87 0.62 0.80 0.97

MUFA �0.32 0.09 0.79 0.50 0.26 0.68 0.99 0.82 0.64 0.79 0.98

PUFA �0.38 0.19 0.52 0.69 0.25 0.39 0.79 0.70 0.44 0.70 0.77

C16:0 �0.35 �0.13 0.98 0.40 0.15 0.99 0.67 0.69 0.36 0.65 0.62

C18:0 �0.28 �0.07 0.86 0.33 0.12 0.85 0.66 0.70 0.32 0.82 0.78

C18:1 �0.29 0.03 0.80 0.42 0.15 0.71 0.93 0.95 0.60 0.71 0.77

*Standard errors of genetic correlations varied from 0.002 to 0.122 whereas the standard errors of phenotypic correlations varied from 0.000 to

0.010.

© 2016 Blackwell Verlag GmbH • J. Anim. Breed. Genet. 133 (2016) 384–395 389

J. Petrini et al. Genetics of tropical cattle populations



Haile-Mariam et al. (2013), considering daughter trait

deviations (DTD) as phenotypes of 2216 Holstein bulls

genotyped for 45 993 SNP, a lower fraction of the

variation in DTD was explained when using the geno-

mic matrix in comparison to the pedigree-based

matrix. This lower ‘heritability’ was attributed to a

possible imperfect linkage disequilibrium between the

SNP and the quantitative trait loci (QTL) influencing

the trait.

Herein, the estimates of heritability and correlation

obtained by using pedigree-based and combined rela-

tionship matrices were similar, probably due to the

resemblance between these matrices, as argued by

Misztal et al. (2013). The mean difference among the

elements in the inverse of A and H was only 0.01

whereas the mean difference between G (genomic

matrix) and A22 (sub-matrix of A for genotyped ani-

mals) matrices was equal to 0.0000024 (Figure 2).

Furthermore, the amount of information per cow

may have also minimized the impact of the genomic

data on the results. The number of monthly records

per cow varied from one to 28. In addition, 1010 cows

with phenotypes also have daughters measured. It

must be recognized that the main advantage of geno-

mics is to provide an accurate evaluation of animals at

birth. Therefore, although genomics can add accuracy

to cows with their own data, in such case little was left

for the genotypes to explain and, consequently, it was

possible to obtain reliable estimates without SNP

information. A greater difference between traditional

and genomics approaches would be probably observed

if the number of genotyped animals was higher and if

bulls’ genotypes were included in the analyses. How-

ever, the slightly lower standard errors obtained for

the genetic correlations in the genomic approach con-

firmed this method as a useful tool to increase the

accuracy of estimates.

In general, the estimates of heritability were lower

than those estimated in Soyeurt et al. (2008), Stoop

et al. (2008), Schopen et al. (2009), and Bastin et al.

(2011), which also used measurements determined

by mid-infrared spectrometry. The heritability for FP

in these studies varied from 0.37 to 0.50 whereas for

PP ranged from 0.44 to 0.66. This difference can be

due to the use of first-parity cows. Differences in heri-

tabilities for milk traits across parities were reported

by Bastin et al. (2013), with generally higher heri-

tabilities estimated in first parity than in later parities.

Walsh et al. (2007), based on McDonald (1968),

attributed the effect of parity on milk characteristics to

longer and more dilated streak canals presented by

multiparous cows in comparison to primiparous cows.

Also, in Stoop et al. (2008) and Schopen et al. (2009),

the cows were between 63 and 282 days in milk, a

period in which higher heritabilities for these two

traits were reported (Bastin et al. 2011). However,

Penasa et al. (2015) obtained estimates similar to

those of the present study. The estimates of heritabil-

ity for FP and PP were 0.201 and 0.267, respectively,

in a population of 25 317 multiparous Holstein cows

with milk samples collected between five and

365 days in milk.

The same behaviour was observed for LP, with esti-

mates of heritability ranging from 0.478 and 0.508 in

Miglior et al. (2007) and equal to 0.62 in Schopen

et al. (2009). However, a closer estimate of 0.33 for LP

was estimated by Tiezzi et al. (2013) considering

monthly records of 25 590 Holstein-Friesian cows

Table 5 Phenotypic correlations (above diagonal), genetic correlations (below diagonal) obtained through genomic analyses for milk yield (MY),

somatic cell score (SCS), fat percentage (FP), protein percentage (PP), lactose percentage (LP), total saturated (SFA), unsaturated (UFA), monounsatu-

rated (MUFA), and polyunsaturated (PUFA) fatty acids, and palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1) content in milk*

MY SCS FP PP LP SFA UFA MUFA PUFA C16:0 C18:0 C18:1

MY �0.24 �0.06 �0.26 0.18 �0.05 �0.03 �0.03 �0.02 �0.09 �0.06 �0.01

SCS �0.14 0.04 0.20 �0.35 0.02 0.06 0.05 0.07 0.05 0.02 0.01

FP �0.39 �0.03 0.15 0.01 0.95 0.83 0.83 0.71 0.90 0.82 0.81

PP �0.42 �0.04 0.52 0.04 0.15 0.10 0.07 0.22 0.13 0.05 0.03

LP �0.20 �0.27 0.12 0.35 0.02 0.00 0.00 0.00 0.00 0.01 0.00

SFA �0.35 �0.10 0.99 0.45 0.12 0.70 0.70 0.59 0.96 0.78 0.68

UFA �0.29 0.04 0.77 0.53 0.22 0.65 1.00 0.87 0.62 0.80 0.97

MUFA �0.28 0.02 0.78 0.48 0.22 0.67 0.99 0.82 0.64 0.79 0.98

PUFA �0.33 0.13 0.50 0.68 0.23 0.36 0.78 0.69 0.43 0.70 0.77

C16:0 �0.34 �0.13 0.98 0.38 0.13 0.99 0.65 0.68 0.33 0.65 0.62

C18:0 �0.27 �0.11 0.86 0.31 0.11 0.84 0.64 0.67 0.29 0.82 0.78

C18:1 �0.27 0.02 0.80 0.40 0.12 0.70 0.93 0.95 0.59 0.70 0.76

*Standard errors of genetic correlations varied from 0.002 to 0.118 whereas the standard errors of phenotypic correlations varied from 0.000 to

0.010.
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from first to ninth parity and with days in milk

between six and 365. In general, few studies have

given the heritability of LP in bovine milk despite its

importance as the major carbohydrate and osmolyte

of milk, determining milk volume, and as raw mate-

rial in the manufacture of dairy products such as

cheese and whey. Also, a favourable effect of lactose

content on clotting time was reported in an Ayrshire

population (Lindstr€om et al. 1984). Nevertheless,

because of its moderate to high heritability and posi-

tive genetic correlation with PP and FP, which are

common selection criteria in animal breeding; indirect

selection for LP is likely to occur.

Low heritabilities for daily MY also were estimated

by Cassandro et al. (2008) and Penasa et al. (2015),

with values of 0.09 and 0.104, respectively; and for

SCS by Cassandro et al. (2008) and Negussie et al.

(2008), with values ranging from 0.07 and 0.12. How-

ever, differences among studies regarding heritability

estimates for SCS were expected due to the variety of

equations that can be used to transform somatic cell

count to somatic cell score. Herein, the estimates for

SCS presented large standard errors, even with the

inclusion of genotypic data, probably because of the

high variability of this trait. This way, a greater

amount of information is necessary to obtain more

accurate estimates of genetic parameters for SCS.

Differences in the analysis model and in the unit

and methodology of measurement can make it diffi-

cult to compare genetic parameters for fatty acids

content among studies (Bastin et al. 2011). For exam-

ple, in Soyeurt et al. (2008) and Bastin et al. (2013),

calibration equations were used to predict fatty acids

composition in milk by mid-infrared spectrometry.

These equations were built by partial least squares

regressions from chromatographic and spectral data

(Soyeurt et al. 2006, 2011). In turn, in our study, the

measurements obtained by mid-infrared spectrometry

technique were used directly, with a previous valida-

tion analysis showing correlations ranging from 0.60

to 0.92 between the measurements determined by gas

chromatography and mid-infrared spectrometry

(Rodriguez et al. 2014). Moreover, these traits are

greatly influenced by environmental conditions,

mainly by the diet (Penasa et al. 2015). Indeed, higher

heritabilities were estimated by Soyeurt et al. (2008)

for SFA (h2 = 0.42) and MUFA (h2 = 0.14), and by

Bastin et al. (2011), with values of 0.426 for SFA,

0.212 for MUFA, 0.298 for PUFA, 0.223 for UFA,

0.408 for C16:0, 0.380 for C18:0, and 0.179 for C18:1.

Nevertheless, similar estimates were obtained by

Penasa et al. (2015), with values of 0.246, 0.069,

0.082 and 0.078 for SFA, UFA, MUFA and PUFA,

respectively. Herein and in these studies, the heri-

tabilities associated with saturated fatty acids (SFA,

C18:0, and C16:0) were higher than those obtained

for unsaturated fatty acids (UFA, MUFA, PUFA, and

C18:1). This probably occurs because of the origin of

fatty acids. Short and medium-chain saturated fatty

acids are mainly synthetized de novo in the mammary

gland through the action of acetyl-coenzyme A car-

boxylase and fatty acid synthase whereas a fraction of

palmitic acid and other long chain fatty acids are

obtained from the blood stream, derived from the diet

Figure 2 Elements of diagonal and off-diagonal of A22 (sub-matrix of A for genotyped animals) and G (genomic matrix) matrices plotted against each

other (the grey line is a regression line and the shadow area represented the 95% confidence intervals).
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or body fat mobilization (Grummer 1991; Lock &

Bauman 2004; Bastin et al. 2011). Thus, due to the

greater environmental influence over long chain fatty

acids, the lower heritability associated with this group

is reasonable (Bastin et al. 2011).

Despite the possibility of changing milk fatty acids

profile through sire selection, the direction of this

selection is not well established yet, mainly because of

the variety of aspects linked to these traits. Among

saturated fatty acids, the butyric acid is a modulator of

gene function, acting in colon cancer protection and

inhibiting mammary tumorigenesis (Parodi 1997;

German 1999; Haug et al. 2007); the caprylic and cap-

ric acids have possible antiviral activities (Thormar

et al. 1994) whereas lauric, myristic and palmitic acids

can increase levels of low (LDL) and high (HDL) den-

sity lipoprotein cholesterol (Haug et al. 2007);

although no consistent association between dairy

foods and cardiovascular diseases has been reported

(Haug et al. 2007; German et al. 2009).

At the same time, monounsaturated fatty acids, such

as oleic acid, were related to lower plasma cholesterol,

LDL-cholesterol and triacylglycerol concentrations

(Kris-Etherton et al. 1999). Omega-3 fatty acids (do-

cosahexaenoic acid and eicosapentaenoic acid) can act

in heart diseases prevention since they have anti-

inflammatory effects, are antithrombotic and inhibit

atherosclerosis, among other properties (Connor

2000). Another group of PUFA, conjugated linoleic

acid (CLA) was associated with antiadipogenic, antidia-

betogenic, anticarcinogenic and antiatherosclerotic

effects (Belury 2002; Lock & Bauman 2004). Neverthe-

less, an increase in UFA content can change the sen-

sory quality of dairy products (Chilliard & Ferlay 2004;

Woods & Fearon 2009), increasing their susceptibility

to oxidation and development of off-flavours (Ashes

et al. 1997; Campbell et al. 2003). Moreover, high

levels of long-chain fatty acids in milk fat, especially

stearic and oleic acids; may be due to body fat mobiliza-

tion in subclinical ketotic cows, indicating a negative

energy balance (Van Haelst et al. 2008).

Considering these properties, several studies recom-

mended an optimum proportion of fatty acids in milk

to be achieved through sire selection (Grummer 1991;

Chilliard et al. 2000; Haug et al. 2007). However, since

they are highly correlated with fat percentage, indi-

rect selection is already happening. Therefore, it is

important to rapidly establish the priority aspects

related to fatty acids profile (human health, cow

health, manufacturing features) (Bastin et al. 2013)

and also to evaluate the possible effects of selection

for some fatty acids over fatty acids profile and other

milk composition traits, such as protein and lactose.

The moderate to high heritabilities associated with

milk components, especially FP and PP, suggest that

sire selection can be used to improve milk quality.

However, the antagonist relationship between MY

and these milk components, also reported by Miglior

et al. (2007), Cassandro et al. (2008) and Penasa et al.

(2015), can prevent a simultaneous genetic gain for

milk volume and milk quality. This is particularly

harmful when the payment for the farmer is predomi-

nantly based on the amount of milk delivered, mak-

ing milk yield the main selection objective as occurs

in Brazil. Such a situation confirms the usefulness of a

total merit index in selection.

Genetic correlations between SCS and milk yield

and composition traits varied among studies, mainly

because of the already reported effects of stage of lac-

tation and parity (Haile-Mariam et al. 2001). The esti-

mates obtained in the present study should be

interpreted with caution due to their high standard

errors. Herein, the negative genetic correlation

between MY and SCS was expected because the

occurrence of mastitis, indicated by the high SCS,

damages the udder with a consequent reduction in

milk yield. However, a positive correlation (un-

favourable) can also occur, given that cows with high

production may be more susceptible to infection

(Haile-Mariam et al. 2001). The harm caused by mas-

titis in the udder can also explain the small decrease

in protein and fat content with even greater changes

in the individual milk components. The concentration

of proteins synthesized in the mammary gland in

milk, such as a-casein, b-casein and b-lactoglobulin,
are often reduced in the presence of mastitis

concomitantly with an increase of bovine serum albu-

min and immunoglobulins (Kitchen 1981). Similarly,

Randolph & Erwin (1974) reported higher concentra-

tions of short-chain esterified fatty acids and unsatu-

rated fatty acids and lower concentration of esterified

fatty acids in mastitis-positive milks compared to mas-

titis-negative milks. The possible causes are alterations

in direct synthesis of lipid components by the mam-

mary gland or to changes in permeability of the mam-

mary gland (Randolph & Erwin 1974). This behaviour

was confirmed in the present study, with positive

genetic correlations between SCS and UFA, MUFA,

PUFA and C18:1, and negative genetic correlations

between SCS and SFA, C16:0 and C18:0.

Somatic cell score also has a negative genetic corre-

lation with LP. This antagonist relationship can be

due to tissue damage caused by the infection and the

consequent decrease of lactose biosynthesis, as

explained for PP and FP above. Another hypothesis is

a reduction of available glucose to the mammary
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gland as a result of reduced blood flow caused by the

general stress conditions during the disease (Kitchen

1981).

The differences among studies were attributed to

possible effects of lactation number, days in milk and

methodology adopted. However, these differences

also could be caused by the production environment.

Costa et al. (2000), using fat yield and milk yield data

of daughters of 705 United States sires and 701 Brazil-

ian sires, estimated lower heritabilities in the Brazilian

population, with values of 0.25 and 0.22 for milk yield

and fat yield, respectively, in comparison to 0.34 and

0.35 obtained for the same traits in the US population.

This probably occurs because environmental condi-

tions limited the expression of genetic potential, con-

straining the genetic variance and, consequently,

reducing heritability. Some implications are derived

from this situation. Firstly, it is more difficult to differ-

entiate among breeding values, which will demand

greater selection intensity (Costa et al. 2000) and

more accurate predictions to achieve genetic progress

through selection. Thus, even though the inclusion of

genomic information did not alter the estimates of

genetic parameters, genotype records can be useful in

this situation to increase the amount of data available

per individual, enhancing the prediction of genetic

merit. Secondly, the relative superiority of sires

selected in other countries may be less strongly

related to breeding values under tropical and subtrop-

ical conditions with a consequent lower response to

selection (Costa et al. 2000). These results confirm the

necessity to locally estimate the genetic parameters

and, furthermore, the importance to evaluate the

animals based on the conditions where selection deci-

sions will be made.

Conclusions

Smaller estimates of components of covariance were

obtained here compared to other similar studies.

These differences can be due to lactation number,

days in milk, methodology used or even to manage-

ment and environment factors, in this latter case indi-

cating that tropical and subtropical conditions can

restrict the expression of genetic potential by individ-

uals with a consequent reduction of genetic variabil-

ity. In such a situation, the differentiation among

animals is problematic, highlighting the importance of

using parameters specific of the population in which

selection will be applied. Even though genomic infor-

mation had little impact on estimates of genetic

parameters, it can be an auxiliary tool to accurately

predicted genetic merit and, therefore, increase

genetic gain when the superiority of selected parents

is less evident. The greatest impact of genomics is in

reducing the generation interval with only a small

reduction in accuracy leading to a large increase in

rate of genetic progress.

The moderate and high heritabilities for milk com-

ponents revealed the possibility of improving milk

quality by using selection. Nevertheless, because of

the antagonist relationship between milk yield and

milk component traits and also, the high and unfa-

vourable correlation between milk fat content and

total saturated fatty acids in milk, it should be valu-

able to consider those traits simultaneously in genetic

evaluation, considering their economic relevance

for the system and their phenotypic and genetic

correlation.
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