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Simple Summary: With the increasing cost of production, increasing global population, and a greater
focus on sustainability, methods to improve cow efficiency are becoming critical for the dairy industry.
An efficient cow is the one that produces the same amount of milk and milk solids while consuming
less feed and remaining healthy and fertile; thus, allowing for a reduction of costs without reduced
production. This simulation showed that directly selecting on feed conversion efficiency allowed for
an economically advantageous and more balanced response to selection than indirect selection on
feed intake. If too much selection pressure is placed on feed efficiency, there are negative implications
for other traits within the selection index. Further work is required to optimize the methods for
including feed efficiency in a selection index.

Abstract: The inclusion of feed efficiency in the breeding goal for dairy cattle has been discussed
for many years. The effects of incorporating feed efficiency into a selection index were assessed by
indirect selection (dry matter intake) and direct selection (residual feed intake) using deterministic
modeling. Both traits were investigated in three ways: (1) restricting the trait genetic gain to zero,
(2) applying negative selection pressure, and (3) applying positive selection pressure. Changes
in response to selection from economic and genetic gain perspectives were used to evaluate the
impact of including feed efficiency with direct or indirect selection in an index. Improving feed
efficiency through direct selection on residual feed intake was the best scenario analyzed, with the
highest overall economic response including favorable responses to selection for production and
feed efficiency. Over time, the response to selection is cumulative, with the potential for animals to
reduce consumption by 0.16 kg to 2.7 kg of dry matter per day while maintaining production. As the
selection pressure increased on residual feed intake, the response to selection for production, health,
and fertility traits and body condition score became increasingly less favorable. This work provides
insight into the potential long-term effects of selecting for feed efficiency as residual feed intake.
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1. Introduction

With the global population rising rapidly, sustainable dairy production is a major
research topic due to the demand for high-quality and sustainably produced dairy prod-
ucts [1]. Methods to increase the sustainability of the dairy industry are under continuous
investigation. One potential way to improve on-farm efficiency is to breed for animals that
are more feed efficient. Feed is a major expense for the dairy industry, accounting for over
50% of farm operations’ total costs [2,3]. Therefore, the efficiency with which cows convert
feed to milk directly impacts farm costs and efficiency [4,5]. An efficient cow is the one that
consumes less feed for the same amount of milk production while maintaining health and
fertility; thus, allowing for a reduction of costs without reduced production [6].

Historically, genetic selection of dairy cattle was focused primarily on increasing milk
production but additional traits, such as fertility and health, have been incorporated into
selection programs around the world over the last 25 years [7,8]. Due to an increased focus
on the financial aspects of dairy production, dairy producers prioritize selecting traits
related to healthy and high-producing cows that are reproductively fit and have a long
productive life in the herd. In Canada, there are currently two official selection indices:
the Lifetime Performance Index (LPI) and Pro$, neither of which yet contain a direct feed
efficiency (FE) trait [9,10]. Thus, there is an opportunity to include a FE trait in selection
indices to improve the sustainability of Canadian dairy production.

There has been successful selection for FE in other livestock species, such as swine
and poultry [11–13]. In dairy cattle, variation in the amount of feed consumed among
animals of similar production levels has been observed, suggesting the ability to select for
animals that are more efficient at feed utilization [14,15]. This observation has led to the
investigation of including FE in breeding objectives worldwide [2,6,16–18]. The lack of
practical methods for measuring feed intake on a large number of animals has hindered the
incorporation of FE into breeding programs. Using technologies such as milk mid-infrared
spectroscopy [19] and 3D cameras [20] to estimate feed intake could enable more large-scale
phenotyping, allowing for easier implementation of FE into breeding programs [21,22].
With many aspects of including FE in breeding programs still unknown, the purpose of this
research was to estimate preliminary genetic and phenotypic correlations for dry matter
intake and residual feed intake with eight currently evaluated traits and to simulate the
impact of including FE through direct and indirect selection in a selection index.

2. Materials and Methods
2.1. Data
2.1.1. Trait Definitions

The evaluated traits were chosen as representatives for aspects of current selection that
could be most impacted by the inclusion of novel traits and made up the core list of traits
included in each scenario. The core traits were from first-lactation animals and included
two production traits: fat yield (FY) and protein yield (PY); two fertility traits: age at first
service for heifers (AFS) and interval from first service to conception for first parity cows
(FSTC); two type traits: body condition score (BCS) and stature (STAT); and two health
traits: clinical ketosis (CK) and displaced abomasum (DA). Fat yield and protein yield were
measured as total 305 d yield in the first lactation. Age at first service was the difference
between the date of birth and date of the first insemination, expressed in days. First service
to conception was the number of days between the first service and successful conception
in cows. Both health traits (CK and DA) were producer recorded and defined as binary
traits, where 0 represented no incidence of the disease and 1 represented at least one case
of the disease in the first lactation. The type traits (BCS and STAT) were assessed by trained
classifiers at Holstein Canada (Brantford, ON, Canada) during the animals’ first lactation,
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with BCS being a measure of the fat covering over the tail head and rump on a scale of one
(very thin) to five (very fat), and STAT was measured in centimeters from the top of the
spine in between the hips to the ground. The novel traits selected for inclusion were dry
matter intake (DMI) and, as a measure of FE, residual feed intake (RFI). Dry matter intake
is a measure of feed intake and was defined as the average amount of dry matter (DM)
consumed per day in kilograms by an animal for a standard 305 d lactation. Residual feed
intake is a measure of FE that was defined as the difference between an animal’s expected
feed intake based on requirements for maintenance and production and its actual feed
intake [2,23]. To determine the effects of the novel traits on the core traits’ genetic trends
and the impact on the overall selection index, selection pressure was placed on DMI and
RFI separately.

2.1.2. Data

The dataset for the eight core traits was provided by Lactanet Canada (Guelph, ON,
Canada) and the dataset for DMI and RFI was provided by the Efficient Dairy Genome
Project (https://www.genomedairy.ualberta.ca/, accessed on 15 October 2020). Data for
DMI and RFI were available from five research stations located in Canada (University of
Guelph, ON; University of Alberta, AB; Commercial Herd, Alberta), the United States of
America (USDA-ARS, Beltsville, MD), Denmark (Aarhus University, Tjele), and Switzer-
land (Agroscope, Posieux). Data from a Canadian commercial herd was also available
for this study. The data were standardized, and records were re-scaled to the mean and
standard deviation for Canadian cows. Average daily DMI records were available for a
305 d lactation on 2360 first-lactation animals. Residual feed intake was calculated for 2030
animals as the residual of the linear fixed regression of DMI on energy corrected milk yield
(ECM; [24]) and metabolic body weight (MBW; body weight0.75). The data on the eight core
traits came from a random sampling of 5% of all Canadian herds in the database, apart from
the three herds collecting DMI, ECM, MBW, and RFI. The resulting file contained around
150,000 animals. Further details on these data, including editing procedures and results
for genetic and phenotypic correlations between the eight core traits, were presented by
Oliveira et al. [25]. Trait definitions, genetic and phenotypic standard deviation, heritability,
and breeding value accuracy are presented in Table 1.

Table 1. Trait definitions, genetic and phenotypic standard deviations, heritability estimates, and genomic accuracy.

Trait Definition Genetic
Standard Deviation

Phenotypic
Standard Deviation Heritability GEBV Accuracy

FY Fat yield (kg) during a 305 d
lactation 30.67 1 70.13 1 0.29 a,1 0.80

PY Protein yield (kg) during a 305 d
lactation 21.33 1 55.45 1 0.22 a,1 0.79

BCS

The measure of the fat covering
over the tail head and rump on a

scale of 1 (very thin) to 5 (very fat)
in first lactation

0.15 1 0.35 1 0.23 a,1 0.77

STAT
Measure (cm) from the top of the

spine in between hips to ground in
first lactation

2.19 1 4.42 1 0.47 a,1 0.77

AFS Number of days from birth to first
insemination 10.91 1 56.08 1 0.04 a,1 0.69

FSTC Number of days from first service
to conception in first lactation 7.45 1 44.68 1 0.03 a,1 0.74

CK
Binary scored trait (0:no

case/unknown, 1:at least one case)
in first lactation

0.03 1 0.21 1 0.02 a,1 0.61

https://www.genomedairy.ualberta.ca/
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Table 1. Cont.

Trait Definition Genetic
Standard Deviation

Phenotypic
Standard Deviation Heritability GEBV Accuracy

DA
Binary scored trait (0:no

case/unknown, 1:at least one case)
in first lactation

0.03 1 0.15 1 0.04 a,1 0.59

DMI Average dry matter intake per day
for a 305 d lactation 1.54 3.25 0.23 b 0.59 2

RFI Average residual feed intake per
day for a 305 d lactation 0.89 2.50 0.13 b 0.40 3

a standard deviation less than 0.01, b standard deviation between 0.01 and 0.05, 1 Oliveira Jr. et al. [25], 2 Miglior et al. [26], 3 Pryce et al.
[27]. GEBV = genomic breeding value, FY = fat yield, PY = protein yield, BCS = body condition score, STAT = stature, AFS = age at first
service, FSTC = first service to conception, CK = clinical ketosis, DA = displaced abomasum, DMI = dry matter intake, RFI = residual
feed intake.

2.2. Genetic Parameter Estimation

The genetic correlations among the eight core traits and the two novel traits were
estimated with a series of bivariate animal models using WOMBAT version 07-02-2020 [28].
The effects considered in the models depended on the trait and followed Interbull recom-
mendations for the eight core traits [25] and the model for DMI and RFI is presented below.
The general statistical model was:

y = Xb + Za + Wh + e,

where: y is the vector of the observed phenotypes; b is the vector of fixed effects including
year-season of calving (66 levels) and age at calving class (6 levels); a is the vector of
random additive genetic effects; h is the vector of random herd-year of calving effects; X,
Z, and W are incidence matrices relating b, a, and h with the phenotypic observations in y;
and e is the vector of random residual error. The covariance matrices of a, h, and e were
assumed to be:

var

 a
h
e

 =

 Aσ2
a 0 0

0 Iσ2
h 0

0 0 Iσ2
e


where σ2

a is the additive genetic variance, σ2
h is the herd-year variance, σ2

e is the residual
variance, A is the numerator relationship matrix, and I is an identity matrix. The genetic
parameters for the core traits are available in Table S1. The average genomic breeding
value (GEBV) accuracy of 1390 bulls born between 2010 and 2018 was provided by Lactanet
Canada for all core traits and used as an input parameter for the simulation together with
the parameter estimates. The estimate of GEBV accuracy for DMI was provided by the
Efficient Dairy Genome Project [26], while a literature estimate was used for the GEBV
accuracy for RFI [27] as presented in Table 1.

2.3. Modeling Software

The modeling of including either DMI or RFI into a breeding program was done
using ZPLAN+ (version 1.5.10, vit, Verden, Germany), a deterministic modeling program
that can be used to model genetic and economic parameters within complex breeding
programs [29]. The program utilizes selection index theory [30], the gene flow method [31],
and economic modeling. To follow the gene flow, the population structure has to be defined
using selection groups with their selection criteria, such as selection intensity and breeding
goals. As already mentioned, an additional required input for the software is the accuracy
of the GEBV.
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2.4. Population Structure

This study focused on different scenarios with the same population structure. The
male selection pathway contained three steps modeled to resemble the current Canadian
setting. The simulation began with 30,000 genotyped bull calves (<1 year of age), where
2100 (7%) became genomic bulls to be used for mating [32]. The genomic bulls, which are
bulls for which breeding values are based solely on their genomic information, remained at
this stage for three years, at which time 100 (5%) of these became proven bulls, which had
100 daughter records each [32]. Selected proven bulls remained as active breeding bulls for
two additional years. The female selection pathway began with a population of 500,000
heifer calves, where 425,000 (85%) of the animals joined the milking herd at the time of first
calving [33]. They remained in the herd as lactating cows for three lactations. From the
initial population of 500,000 heifer calves, 50,000 (10%) became elite females, which were
used to produce the next generation of bulls [33]. Elite females were mated exclusively to
genomic bulls, while 70% of the general milking herd were mated to genomic bulls and
30% mated to proven bulls [34]. A visual representation of the population structure is
presented in Figure 1. The allele flow matrix, where pij represents the proportion of alleles
in class i at time t that come from class j at time t-1, for the breeding pathways is presented
in Table 2. This matrix describes the source of all alleles in each age class [35].
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Table 2. The allele flow matrix 1 showing selection groups, where bulls refer to all breeding males and cows refer to all
breeding females.

Sex
Bulls Cows

Time 1 2 3 4 5 1 2 3 4 5

Bulls

1 0 0.167 0.167 0.167 0 0 0.125 0.125 0.125 0.125
2 1 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 0
4 0 0 1 0 0 0 0 0 0 0
5 0 0 0 1 0 0 0 0 0 0

Cows

1 0 0.117 0.117 0.192 0.075 0 0.125 0.125 0.125 0.125
2 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 1 0 0 0
4 0 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 0 0 1 0

1 The allele flow matrix, where pij represents the proportion of alleles in class i at time t that come from class j at time t−1. This matrix
describes the source of all alleles in each age class [35].

2.5. Selection Scenarios

The incorporation of FE was carried out placing direct or indirect selection pressure
on RFI, a measure of FE. To assess the impact of direct versus indirect selection, selection
pressure was applied to DMI (indirect selection) or RFI (direct selection) using three meth-
ods: (1) restricting the trait genetic gain to zero (C); (2) applying negative (unfavorable)
selection pressure (N); and (3) applying positive (favorable) selection pressure (P). For a
baseline measurement, a scenario where DMI and RFI were included without selection
pressure (BASE) was considered. Due to the high standard error for the estimated genetic
correlations between the novel traits and currently recorded traits, two versions of each
selection scenario were performed. The first version of each scenario (BASE, C, P, and N)
used the estimated genetic parameters. The second version of each scenario (BASE_SD,
C_SD, P_SD, and N_SD) used more conservative parameters, where the genetic param-
eters were adjusted by moving the correlation towards zero, either through adding or
subtracting the respective standard error (Table S2). Index weights were optimized for each
selection scenario, considering the economic value, genetic and phenotypic (co)variance
matrices (Table S3).

A total of 14 scenarios were considered to assess the impact of including FE through
indirect (DMI) or direct (RFI) selection pressure in a selection index. Selection scenarios are
denoted by the novel trait under selection pressure (DMI or RFI), the scenarios utilizing the
correlation corrected by the standard error are indicated by SD, and the type of selection
for the novel trait. For example, DMI_N_SD indicates the scenario where DMI is included
with a negative selection pressure, utilizing the adjusted correlation.

In addition to comparing the impact of selecting directly or indirectly on FE, the impact
of increasing the positive selection pressure on RFI was explored. This was facilitated by
doubling, tripling, quadrupling, and quintupling the economic value on RFI. Which was
done because the economic values that were directly used to define the index weight in
the selection index (see next section) would likely lead to a weak index weight for RFI.
Scenarios were named following the same structure, where P denotes the positive selection
pressure, with the addition of a number to indicate the multiplication factor of the economic
value. For example, the scenario in which the RFI economic value was tripled was denoted
by RFI_P3. Response to selection over time was calculated based on compound genetic
gain and expressed in units of DMI per day.

2.6. Economic Values

Fat and protein yield are the main sources of revenue for producers in the Canadian
dairy cattle industry [10]. Consequently, the assumed breeding objective was to improve FY
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and PY, while simultaneously improving health and fertility. Based on the trait definitions,
improving health and fertility translates to a reduction of the incidence of disease and a
reduction in the number of days at first service, and the number of days from the first
service to conception. The economic values for conformation traits were optimized within
each scenario to have no response to selection, in other words, to be held constant. The
optimal economic value to hold the type traits constant was calculated using an Excel
program [36]. All economic values presented are considered in Canadian dollars (CAD).
Literature economic values in were: CAD 2.57 per day for AFS [37], CAD 6.86 per day for
FSTC [38], CAD 233.00 per case of CK [39], and CAD 707.00 per case of DA [40]. Economic
values (ν) were calculated for production traits by:

ν = R − C

C = C1 ∗ DMP1

where ν is the economic value, R is the revenue, C is the cost, C1 is the cost of 1 kg of DM,
and DMP1 is the amount of DM needed to produce 1.00 kg of the trait (fat or protein).

The cost of 1.00 kg of DM was assumed to be CAD 0.29 and the amount of DM needed
to produce 1.00 kg of fat and protein was 6.00 kg and 3.70 kg, respectively [41]. Revenue
for each trait was calculated by averaging the monthly producer-paid price in Canada for
the trait from August 2019 to July 2020, which was CAD 10.76 and 8.23 per kg for fat and
protein, respectively [42]. With that, the economic values for FY and PY were CAD 9.02 and
7.16, respectively. Conversely, health and fertility traits were assigned negative economic
values, as the breeding goal was to reduce the incidence of disease, age at first service, and
the number of days between first service and conception traits.

Each selection strategy for incorporating DMI or RFI had an economic value to achieve
the selection goal of the specific index. The economic values for both DMI and RFI were the
cost of DM associated with a 1 kg/day change in efficiency over a 305 d lactation. When
holding either DMI or RFI constant in the C scenarios, an Excel program [36] was used to
determine the optimal economic value. Given the above assumptions, when the breeding
goal was to place positive selection pressure on the trait, a positive economic value (88.45)
was placed on DMI and a negative economic value (−88.45) was placed on RFI. The inverse
was true when placing negative selection pressure on the trait. When increasing positive
selection pressure on RFI, the economic value was doubled (−176.90, RFI_P2), tripled
(−265.35, RFI_P3), quadrupled (−353.80, RFI_P4), and quintupled (−442.25, RFI_P5).

3. Results
3.1. Genetic Parameters

This work provided preliminary estimates for the relationship of DMI and RFI with
currently evaluated traits (Table 3). The data available for animals who had records for
DMI and RFI along with all other recorded traits were limited; therefore, some parameter
estimates had large standard errors (from 0.09 to 0.23 and 0.14 to 0.29 for genetic correlations
and 0.02 to 0.17 and 0.02 to 0.21 for phenotypic correlations, for DMI and RFI, respectively).

Favorable genetic correlations were found between both production traits with DMI
(0.43 for FY and 0.50 for PY). Production traits had genetic correlations with RFI less than
0.10. The genetic correlations (standard deviation) between DMI and health or fertility
ranged from weak −0.13 (0.16) for CK to strong −0.61 (0.17) for AFS. Similar patterns were
observed for the genetic correlations between RFI and health or fertility, ranging from
−0.04 (0.29) for FSTC to −0.41 (0.24) for AFS. Strong genetic and phenotypic correlations
of 0.68 (0.07) and 0.82 (0.02), respectively, were observed between DMI and RFI.
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Table 3. Additive genetic and phenotypic correlation estimates (±standard errors).

Trait - FY PY BCS STAT AFS FSTC CK DA

DMI
ρg 0.43 ± 0.09 0.50 ± 0.09 0.14 ± 0.14 0.05 ± 0.13 −0.61 ± 0.17 −0.13 ± 0.23 −0.07 ± 0.21 −0.13 ± 0.16
ρp 0.29 ± 0.02 0.29 ± 0.02 0.01 ± 0.02 0.25 ± 0.04 −0.05 ± 0.04 0.04 ± 0.04 0.23 ± 0.14 0.15 ± 0.17

RFI
ρg −0.07 ± 0.14 0.08 ± 0.14 0.35 ± 0.17 −0.16 ± 0.15 −0.41 ± 0.24 −0.04 ± 0.29 −0.09 ± 0.26 −0.19 ± 0.21
ρp 0.03 ± 0.03 0.03 ± 0.02 0.03 ± 0.02 0.08 ± 0.04 −0.05 ± 0.04 0.05 ± 0.04 −0.32 ± 0.16 −0.31 ± 0.21

FY = fat yield (kg), PY = protein yield (kg), BCS = body condition score (score), STAT = stature (cm), AFS = age at first service (days),
FSTC = first service to conception (days), CK = clinical ketosis (case), DA = displaced abomasum (case), DMI = dry matter intake (kg),
RFI = residual feed intake (kg), ρg = genetic correlation, ρp = phenotypic correlation.

3.2. Direct vs. Indirect Selection on Feed Efficiency
3.2.1. Index Response

The economic index response is presented in Table 4. The most favorable scenario
from an economic perspective is selecting directly on FE with positive selection pressure on
RFI (RFI_P). The index RFI_P was CAD 5.14 more profitable compared to the BASE. In all
cases, scenarios containing selection pressure on DMI were not as profitable as the BASE,
with a difference of up to CAD 45.33. The other two scenarios involving selection pressure
on RFI (RFI_C and RFI_N) were also less profitable than the BASE, with a difference of
CAD 9.88. The most economically favorable scenario in this study was RFI_P.

Table 4. Genetic gain per year (in genetic standard deviations) and the total index response to selection (CAD).

Scenario FY
(kg)

PY
(kg)

BCS
(Score)

STAT
(cm)

AFS
(Days)

FSTC
(Days)

CK
(Case)

DA
(Case)

DMI
(kg)

RFI
(kg)

Total Index Response
(CAD)

BASE 0.53 0.44 −0.09 0.00 −0.11 0.18 −0.16 0.05 0.26 0.04 206.44
BASE_SD 0.53 0.44 −0.08 0.00 −0.10 0.18 −0.16 0.06 0.21 0.02 204.45
DMI_C 0.46 0.33 −0.20 0.00 0.09 0.25 −0.13 0.13 0.00 −0.15 161.11
DMI_P 0.53 0.43 −0.05 0.00 −0.11 0.17 −0.18 0.05 0.27 0.06 167.16
DMI_N 0.54 0.42 −0.11 0.00 −0.04 0.21 −0.18 0.08 0.19 −0.02 174.05
DMI_C_SD 0.44 0.28 0.05 0.00 0.02 0.11 −0.29 0.04 0.00 −0.09 167.12
DMI_P_SD 0.51 0.44 −0.08 0.00 −0.14 0.18 −0.13 0.05 0.25 0.06 167.05
DMI_N_SD 0.53 0.41 −0.11 0.00 −0.05 0.19 −0.18 0.07 0.13 −0.03 183.04
RFI_C 0.53 0.41 −0.05 0.01 −0.07 0.17 −0.21 0.06 0.22 0.00 196.57
RFI_P 0.54 0.44 −0.16 0.02 −0.07 0.20 −0.13 0.08 0.21 −0.02 211.58
RFI_N 0.51 0.43 −0.02 0.00 −0.14 0.16 −0.18 0.03 0.30 0.10 194.81

RFI_C_SD 0.51 0.41 0.00 0.00 −0.10 0.15 −0.21 0.04 0.18 0.00 200.15
RFI_P_SD 0.53 0.44 −0.15 0.00 −0.08 0.19 −0.13 0.07 0.17 −0.02 211.19
RFI_N_SD 0.52 0.43 −0.05 0.01 −0.12 0.19 −0.17 0.05 0.23 0.06 196.89

FY = fat yield (kg), PY = protein yield (kg), BCS = body condition score (score), STAT = stature (cm), AFS = age at first service (days),
FSTC = first service to conception (days), CK = clinical ketosis (case), DA = displaced abomasum (case), DMI = dry matter intake (kg),
RFI = residual feed intake (kg), C = trait held constant, P = positive (favorable) selection pressure, N = negative (unfavorable)
selection pressure.

3.2.2. Trait Response

To assess the individual trait response when selecting on FE, trait response for all traits
were standardized using the genetic standard deviation for the respective trait (Table 4).
The most favorable response to selection for RFI (−0.15 standard deviation units (SDU))
was observed in DMI_C; however, DMI_C also had the least favorable response to selection
for FY, PY, BCS, AFS, FSTC, CK, and DA. Compared to BASE, there was an unfavorable
response to selection in DMI_C with a difference of 0.07 SDU for FY and FSTC, 0.08 SDU
for DA 0.11 SDU for PY and BCS, and 0.20 SDU for AFS. While DMI_N and RFI_P had
similar responses to selection for all traits, including FE (−0.02 SDU), economically RFI_P
was more profitable. Response to selection for FY and PY was similar between scenarios,
except for DMI_C. This trend was also observed for AFS, FSTC, CK, DA, and DMI. The
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trait most affected by including FE directly into the selection index (RFI_P), was BCS where
there was an unfavorable change of 0.08 SDU from the BASE.

3.3. Response of Feed Efficiency over Time

Considering FE over time based on this simulation, if FE is not selected for within a
breeding program (BASE scenario) there is the potential for animals to become less efficient
with cows eating an additional 0.43 kg of DM/day, or 131 kg of DM/305 d lactation after 10
generations. Placing selection pressure (RFI_P) on FE has the potential to improve FE with
cows eating 0.16 kg of DM/day or 49.0 kg of DM/305 d lactation less after 10 generations,
compared to the BASE scenario. If a greater selection pressure were placed on RFI to
improve FE (e.g., 5 times more than in scenario RFI_P), the potential improvement could
reach 2.77 kg of DM/day or 845 kg of DM/305 d lactation compared to not selecting on
FE after 10 generations (Figure 2). When selection pressure is increased on RFI, there was
an unfavorable change in the response to selection on the other traits within the selection
index (Figure 3). Most notably, unfavorable changes in BCS and AFS of 0.16 SDU for each
trait were observed between RFI_P and RFI_P5.
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Figure 2. Cumulative response to selection for dry matter intake per day based on different weights of selection pressure on
RFI over 10 years.
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4. Discussion
4.1. Genetic Parameters

The heritability estimates (Table 1) for DMI (0.23 ± 0.04) were in line with previously
reported estimates [43–45]. Additionally, the heritability for RFI (0.13 ± 0.03) was in
agreement with previous studies that used similar RFI calculation equations [5,46,47].
These estimates indicate that these two traits are moderately heritable and, therefore,
are reliable candidates for a selection program. The favorable genetic correlations of
the production traits with DMI and RFI were in agreement with previously reported
estimates [48,49]. Low phenotypic correlations between production traits and RFI are
expected, as RFI is the residual term from a model containing production traits. The
non-significant, low to moderate, and unfavorable correlations between RFI and the health
and fertility traits suggest that health and fertility traits could have an undesired response
to selection for FE if they are not considered in the selection index. The strong genetic
and phenotypic correlations between DMI and RFI were slightly higher than reported
by Lin et al. [50] and Manafiazar et al. [51]; however, still in the same positive direction.
Overall, given the high standard error, genetic and phenotypic correlations with DMI and
RFI require further investigation using a larger population.

4.2. Response to Selection of Feed Efficiency

Including FE in a selection index through direct or indirect selection has previously
been investigated by Kennedy et al. [11] and Lu et al. [52]. The results of this study agreed
with their conclusions, where it was possible to achieve a similar response to selection on
FE using direct and indirect selection. Direct selection on FE occurs when the selection
pressure is placed directly on the trait, RFI for this study, and indirect selection for FE occurs
when the components of FE are included in the selection index. The components of FE are
traditionally considered to be feed intake, milk production, and body maintenance [21,22].
In this study, the traits that were considered as the components of FE are DMI, FY, and PY
(production) and BCS and STAT (body maintenance). Other traits that could replace those
used in this study are energy-corrected milk and metabolic body weight, which would
represent the production and body maintenance components, respectively [21,22,45]. It is
important to note that FE in this study is a residual trait (RFI), meaning it is the residual
of a linear regression of DMI on the energy sink traits. Seymour et al. [53] suggested that
challenges are surrounding a residual trait for FE, as the model factors considered impact
the estimation of RFI. In this study, the R2 of the model to calculate RFI was 0.27, which
highlights the point that including additional information in the regression model could
impact the residual term. With this information in mind, this study showed that it was
more economically advantageous to directly select on FE as opposed to indirect selection
using DMI.

While the maximum response to selection for FE was observed when DMI was
held constant (DMI_C), it came at a great cost for the response to selection for all other
traits. This was highlighted by the economic response of DMI_C, which had the lowest
economic response of all the scenarios. This observation was in line with previous studies
that suggested a limitation of DMI can lead to a limitation on milk synthesis and other
biological processes [53,54]. The unfavorable response for all other core traits in the index,
and corresponding poor economic index response, lead to the conclusion that selection
directly on RFI is the best option for FE improvement. To further solidify that selecting
directly on RFI was the best method for improving FE, RFI_P was the most profitable
scenario in this study. It is important to note that the economic responses to the indices
presented here are not representative of the true economic response in the industry but
rather provide a method to compare the impact and assess the best methodology for
selection to improve FE.

The trait that was most unfavorably impacted by including FE directly into the
selection index was BCS, which was expected as RFI and BCS had a moderately positive
genetic correlation in this study. Because BCS can be considered an energy sink and
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included in the calculation of RFI, it has been proposed to include BCS in the regression
model on DMI [53]. By including BCS in the regression model, RFI and BCS become
phenotypically independent of each other which has the potential to help mitigate the
unfavorable correlated response. Another way to mitigate any negative impacts could
be to consider the lactation in multiple stages, where FE is only selected for after-peak
lactation, avoiding the stage of lactation where animals are in a negative energy balance
(NEB) [55]. Negative energy balance is a period where cows use more energy than they
can consume, which requires the mobilization of body stores to meet energy demands [56].
When body stores are mobilized, appetite decreases further while milk production is
climbing [57]. This leads to animals appearing to be very efficient in early lactation, when
in fact, this is a fabrication of being in NEB. Applying selection pressure to animals based
on apparent efficiency in early lactation would further exacerbate the issues that come
with being in NEB. Additionally, cows with a high BCS pre-calving mobilize more body
reserves post-calving, further reducing feed intake while producing even more milk in
early lactation [58]. Due to the influence of BCS and impact of NEB in early lactation,
focusing selection after peak lactation, even though a genetic correlation would likely exist
between stages of lactation, would provide a more accurate picture of FE and has fewer
potentially negative impacts on other traits.

Long-term selection on FE will result in animals that are better able to convert feed
to milk. Australia successfully implemented a FE trait known as Feed Saved into their
selection index [6]. Feed Saved is a combination of a genomic RFI component and an
EBV from body weight predicted from type traits [6]. They have seen success with their
breeding program, where animals one standard deviation above the mean consume 65 kg
less feed per year while maintaining the same level of milk production [59]. More recently,
the United States of America has also included Feed Saved into their selection program,
where Feed Saved is expressed as the expected pounds of feed saved per lactation based
on body weight composite and RFI [60]. The exact weighting that should be placed on FE
for optimal progress was not analyzed in this study. Instead, we increased the weighting
on FE to observe the impact on other traits. As the weight on RFI increases, the response to
selection for RFI increases; however, the response to selection for all other traits considered
becomes more unfavorable. In the long term, placing direct selection pressure on FE is the
best way to ensure genetic progress.

5. Conclusions

This study simulated the impacts of direct and indirect selection on FE. The best
scenario to improve FE in this study was to place direct selection pressure on RFI. To
ensure the validity of this study, it should be replicated with a larger dataset for variance
components estimation of the novel traits. The scenario in which selection pressure was
placed directly on FE was the best economically, and there was a minimal unfavorable
impact on most of the other traits within the index. Based on this study, over time the
cumulative response to selection for RFI should lead to improvement of FE with the
potential for animals to be 0.52 kg DM/day or 158 kg DM/305 d lactation more efficient
than not selecting for FE after 10 generations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani11041157/s1, Table S1: Genetic (above) and phenotypic (below) correlations used for
DMI and RFI scenarios, Table S2: Genetic (above) and phenotypic (below) correlations used for
DMI_SD and RFI_SD scenarios, Table S3: Optimized index weights by trait for the BASE, DMI and
RFI scenarios.
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