Page Banner

United States Department of Agriculture

Agricultural Research Service

You are here: Beltsville Area Home / Beltsville Agricultural Research Center / Animal Genomics and Improvement Laboratory / Animal Improvement Program

Social Media Links

Stay Connected to ARS :

ARS On Twitter Email Lists ARS Podcasts ARS RSS Feeds Agriculture Research Magazine

usda logo
GENOMIC3 (09-13)

Updated Dec. 1, 2018

Haplotype tests for recessive disorders that affect fertility and other traits

J.B. Cole, P.M. VanRaden, D.J. Null, J.L. Hutchison, T.A. Cooper, and S.M. Hubbard
Animal Improvement Program, Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
301-504-8334 (voice) ~ 301-504-8092 (fax) ~ ~

This report was based on the UMD3.1 assembly for the bovine genome and has been replaced by AIP Research Report Genomic4, which gives locations based on the ARS-UCD genome assembly.

Haplotype tests now are used routinely to identify new recessive disorders and to track the carrier status of genotyped animals. Changes in the reporting of recessive factors that affect fertility and stillbirth recently have been described in detail (VanRaden et al., 2013). Carrier status for Holstein haplotypes with mutations for bovine leucocyte adhesion deficiency (BLAD; haplotype HHB), complex vertebral malformation (CVM; haplotype HHC), deficiency of uridine monophosphate synthase (DUMPS; haplotype HHD), mulefoot (syndactyly; haploptype HHM), polledness (haplotype HHP), red coat color (haplotypes HBR, HDR, and HHR), and cholesterol deficiency (HCD) now are reported in the XML files distributed by the Council on Dairy Cattle Breeding. Brown Swiss haplotype tests for spinal dismyelination (SDM; haplotype BHD), spinal muscular atrophy (SMA; haplotype BHM), and Weaver Syndrome (haplotype BHW) also are provided, but those tests do not directly include the causative mutation as an additional single nucleotide polymorphism because too few bulls were previously tested; a haplotype for polledness (BHP) also is reported. An exact test of the loss-of-function (LOF) mutation within a haplotype that affects fertility in Jerseys (haplotype JH1) now is used to determine carrier status for genotyped Jerseys, and another Jersey haplotype that affects fertility (JH2) also was discovered (Van Raden et al., 2014); a haplotype for polledness (JHP) also is reported. A haplotype that affects conception rate in Ayrshires (AH1) is now reported (Cooper et al., 2014), and a new Ayrshire haplotype that affects fertility (AH2) was discovered (Null et al., 2017).

The table below lists all of the recessive haplotypes currently tracked in the U.S. genomic evaluation system, the frequency of the minor (less common) haplotype, and the location in base pairs (bp) of the haplotype. Locations are exact (single bp) when the causative mutation is known and approximate (range of bp) when it is unknown, a duplication, a deletion, or multiple mutations. The frequency of carriers in the population is generally twice the haplotype frequency because carriers have 1 defective and 1 normal haplotype.

Breed Haplotype OMIA
9913 ID1
gene name
Frequency (%) Chromosome Region (bp) Reference
Ayrshire AH1 001934 PIRM/UBE3B 13.0 17 65,921,497 Cooper et al. (2014), Venhoranta et al. (2014)
AH2 002134 RPAP2 9.8 3 51,267,548 Null et al. (2017)
Brown Swiss BH1 001825 6.67 7 42,811,272 – 47,002,161 VanRaden et al. (2011)
BH2 001939 TUBD1 7.78 19 11,063,520 Schwarzenbacher et al. (2016)
BHD 001247 SDM/SPAST 2.19 11 14,742,058 Hafner et al. (1993), Thomsen et al. (2010)
BHM 000939 SMA/KDSR(FVT1) 3.61 24 62,118,139 – 62,156,760 El-Hamidi et al. (1989), Krebs et al., 2007
BHP 000483 Polledness/POLLED 0.4 1 1,705,834 – 1,989,480 Medugorac et al. (2012), Rothammer et al. (2014)
BHW 000827 Weaver/PNPLA8 1.56 4 49,878,773 McClure et al. (2013), Kunz et al., 2016
Holstein HBR 001199 Black/red coat color/
0.8 18 14,757,332 – 14,759,082 Lawlor et al. (2014)
HCD 001965 Cholesterol deficiency/APOB 2.5 11 77,958,995 Kipp et al. (2015), Charlier (2016), Menzi et al. (2016), Schütz et al. (2016)
HDR 001529 Dominant red coat color 0.04 3 9,479,761 Capitan et al. (2014), Lawlor et al. (2014), Dorshorst et al., 2015
HH0 000151 Brachyspina/FANCI 2.76 21 21,184,869 – 21,188,198 Agerholm et al. (2006), Charlier et al. (2012)
HH1 000001 APAF1 1.92 5 63,150,400 Adams et al. (2012)
HH2 001823 1.66 1 94,860,836 – 96,553,339 VanRaden et al. (2011), McClure et al. (2014)
HH3 001824 SMC2 2.95 8 95,410,507 Daetwyler et al. (2014), McClure et al. (2014)
HH4 001826 GART 0.37 1 1,277,227 Fritz et al. (2013)
HH5 001941 TFB1M 2.22 9 93,223,651 – 93,370,998 Cooper et al. (2013), Schütz et al. (2016)
HHB 000595 BLAD/ITGB2 0.25 1 145,119,004 Shuster et al. (1992)
HHC 001340 CVM/SLC35A3 1.37 3 43,412,427 Agerholm et al. (2001)
HHD 000262 DUMPS/UMPS 0.01 1 69,757,801 Shanks et al. (1984)
HHM 000963 Mulefoot/LRP4 0.07 15 77,663,790 – 77,701,209 Eldridge et al. (1951), Duchesne et al. (2006)
HHP 000483 Polledness/POLLED 0.71 1 1,705,834– 1,989,480 Medugorac et al. (2012), Rothammer et al. (2014)
HHR 001199 Red coat color/
5.42 18 14,758,207 Joerg et al. (1996)
Jersey JH1 001697 CWC15 12.10 15 15,707,169 Sonstegard et al. (2013)
JH2 001942 1.3 26 8,812,759 – 9,414,082 VanRaden et al. (2014)
JHP 000483 Polledness/POLLED 2.2 1 1,705,834– 1,989,480 Medugorac et al. (2012), Rothammer et al. (2014)
1Online Mendelian Inheritance in Animals (OMIA) identification number for Bos taurus (National Center for Biotechnology Information species code 9913).

Recessives with very low frequencies (e.g., HH4) can be identified because many Holsteins have been genotyped (current exact counts of genotyped animals are shown in the Council on Dairy Cattle Breeding's "Genotype Counts by Chip Type, Breed Code, and Sex Code"). Generally recessives in breeds with fewer genotyped animals and smaller populations will not be detected until they have a high frequency in the population. Haplotype tests are less accurate than LOF mutation tests, and retesting valuable animals that have been identified as carriers using a haplotype test is recommended if an exact test is available. Further information on combining LOF mutation tests with haplotype tests is available (VanRaden et al., 2012) as is further detail on genetic defects (Nicholas and Hobbs, 2014; OMIA - Online Mendelian Inheritance in Animals, 2014).


Adams, H.A., T. Sonstegard, P.M. VanRaden, D.J. Null, C. Van Tassell, and H. Lewin. 2012. Identification of a nonsense mutation in APAF1 that is causal for a decrease in reproductive efficiency in dairy cattle. Plant Anim. Genome XX Conf., abstr. P0555.

Agerholm, J.S., C. Bendixen, O. Andersen, and J. Arnbjerg. 2001. Complex vertebral malformation in Holstein calves. J. Vet. Diagn. Invest. 13:283–289.

Agerholm, J.S., F. McEvoy, and J. Arnbjerg. 2006. Brachyspina syndrome in a Holstein calf. J. Vet. Diagn. Invest. 18:418–422.

Capitan, A., P. Michot, F. Guillaume, C. Grohs, A. Djari, S. Fritz, S. Barbey, P. Otz, E. Bourneuf, D. Esquerré, Y. Gallard, C. Klopp, and D. Boichard. 2014. Rapid discovery of mutations responsible for sporadic dominant genetic defects in livestock using genome sequence data: Enhancing the value of farm animals as model species. Proc. 10th World Congr. Genet. Appl. Livest. Sci., Commun. 182.

Charlier, C. 2016. The role of mobile genetic elements in the bovine genome. Plant Anim. Genome XXIV Conf., abstr. W636.

Charlier, C., J.S. Agerholm, W. Coppieters, P. Karlskov-Mortensen, W. Li, G. de Jong, C. Fasquelle, L. Karim, S. Cirera, N. Cambisano, N. Ahariz, E. Mullaart, M. Georges, and M. Fredholm. 2012. A deletion in the bovine FANCI gene compromises fertility by causing fetal death and brachyspina. PLoS ONE 7:e43085.

Cooper, T.A., G.R. Wiggans, D.J. Null, J.L. Hutchison, and J.B. Cole. 2014. Genomic evaluation, breed identification, and discovery of a haplotype affecting fertility for Ayrshire dairy cattle. J. Dairy Sci. 97:3878–3882.

Cooper, T.A., G.R. Wiggans, P.M. VanRaden, J.L. Hutchison, J.B. Cole, and D.J. Null. 2013. Genomic evaluation of Ayrshire dairy cattle and new haplotypes affecting fertility and stillbirth in Holstein, Brown Swiss and Ayrshire breeds. Amer. Dairy Sci. Assoc.–Amer. Soc. Anim. Sci. joint annual meeting, Indianapolis, IN, July 9, poster T206.

Daetwyler,H.D., A. Capitan, H. Pausch, P. Stothard, R. van Binsbergen, R.F. Brøndum, X. Liao, A. Djari, S.C. Rodriguez, C. Grohs, D. Esquerré, O. Bouchez, M.-N. Rossignol, C. Klopp, D. Rocha, S. Fritz, A. Eggen, P.J. Bowman, D. Coote, A.J. Chamberlain, C. Anderson, C.P. Van Tassell, I. Hulsegge, M.E. Goddard, B. Guldbrandtsen, M.S. Lund, R.F. Veerkamp, D.A. Boichard, R. Fries, and B.J. Hayes. 2014. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nature Genet. 46:858–865.

Dorshorst, B., C. Henegar, X. Liao, M. Sällman Almén, C.-J. Rubin, S. Ito, K. Wakamatsu, P. Stothard, B. Van Doormaal, G. Plastow, G.S. Barsh, and L. Andersson. 2015. Dominant red coat color in Holstein cattle is associated with a missense mutation in the coatomer protein complex, subunit alpha (COPA) gene. PLoS ONE 10:e0128969.

Duchesne, A., M. Gautier, S. Chadi, C. Grohs, S. Floriot, Y. Gallard, G. Caste, A. Ducos, and A. Eggen. 2006. Identification of a doublet missense substitution in the bovine LRP4 gene as a candidate causal mutation for syndactyly in Holstein cattle. Genomics 88:610–621.

El-Hamidi, M., H.W. Leipold, J.G.E. Vestweber, and G. Saperstein. 1989. Spinal muscular atrophy in Brown Swiss calves. J. Vet. Med. A. 36:731–738.

Eldridge, F.E., W.H. Smith, and W.M. McLeod. 1951. Syndactylism in Holstein-Friesian cattle: Its inheritance, description and occurrence. J. Hered. 42:241–250.

Fritz, S., A. Capitan, A. Djari, S. C. Rodriguez, A. Barbat, A. Baur, C. Grohs, B. Weiss, M. Boussaha, D. Esquerré, C. Klopp, D. Rocha, and D. Boichard. 2013. Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2. PLoS ONE 8:e65550.

Hafner, A., E. Dahme, G. Obermaier, P. Schmidt, and G. Dirksen. 1993. Spinal dysmyelination in new-born Brown Swiss x Braunvieh calves. J. Vet. Med. B 40:413–422.

Joerg, H., H.R. Fries, E. Meijerink, and G.F. Stranzinger. 1996. Red coat color in Holstein cattle is associated with a deletion in the MSHR gene. Mamm. Genome 7:317–318.

Kipp, S., D. Segelke, S. Schierenbeck, F. Reinhardt, R. Reents, C. Wurmser, H. Pausch, R. Fries, G. Thaller, J. Tetens, J. Pott, M. Piechotta, and W. Grünberg. 2015. A new Holstein haplotype affecting calf survival. Interbull Bull. 49:49–53.

Krebs, S., I. Medugorac, S. Röther, K. Strässer, and M. Förster. 2007. A missense mutation in the 3-ketodihydrosphingosine reductase FVT1 as candidate causal mutation for bovine spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 104:6746–6751.

Kunz, E., S. Rothammer, H. Pausch, H. Schwarzenbacher, F. Seefried, K. Matiasek, D. Seichter, I. Russ, R. Fries, and I. Medugorac. 2016. Confirmation of a non-synonymous SNP in PNPLA8 as a candidate causal mutation for Weaver syndrome in Brown Swiss cattle. Genet. Sel. Evol. 48:21.

Lawlor, T.J., P.M. VanRaden, D. Null, J. Levisee, and B. Dorhorst. 2014. Using haplotypes to unravel the inheritance of Holstein coat color. Proc. World Congr. Genet. Appl. Livest. Prod., Commun. 289.

McClure, M., E. Kim, D. Bickhart, D. Null, T. Cooper, J. Cole, G. Wiggans, P. Ajmone-Marsan, L. Colli, E. Santus, G.E., Liu, S. Schroeder, L. Matukumalli, C. Van Tassell, and T. Sonstegard. 2013. Fine mapping for Weaver Syndrome in Brown Swiss cattle and the identification of 41 concordant mutations across NRCAM, PNPLA8 and CTTNBP2. PLoS One 8:e59251.

McClure, M.C., D. Bickhart, D. Null, P. VanRaden, L. Xu, G. Wiggans, G. Liu, S. Schroeder, J. Glasscock, J. Armstrong, J.B. Cole, C.P. Van Tassell, and T.S. Sonstegard. 2014. Bovine exome sequence analysis and targeted SNP genotyping of recessive fertility defects BH1, HH2, and HH3 reveal causative mutation in SMC2 for HH3. PLoS ONE 9:e92769.

Medugorac, I., D. Seichter, A. Graf, I. Russ, H. Blum, K.H. Göpel, S. Rothammer, M. Förster, and S. Krebs. 2012. Bovine polledness – An autosomal dominant trait with allelic heterogeneity. PLoS ONE 7:e39477.

Menzi, F., N. Besuchet-Schmutz, M. Fragnière, S. Hofstetter, V. Jagannathan, T. Mock, A Raemy, E. Studer, K. Mehinagic, N. Regenscheit, M. Meylan, F. Schmitz-Hsu, and C. Drögemüller. 2016. A transposable element insertion in APOB causes cholesterol deficiency in Holstein cattle. Anim. Genet. 47:253–257.

Nicholas, F.W., and M. Hobbs. 2014. Mutation discovery for Mendelian traits in non-laboratory animals: A review of achievements up to 2012. Anim. Genet. 45:157–170.

Null, D.J., J.L. Hutchison, D.M. Bickhart, P.M. VanRaden, and J.B. Cole. 2017. Discovery of a haplotype affecting fertility in Ayrshire dairy cattle and identification of a putative causal variant. J. Dairy Sci.100(Suppl. 2):199(abstr. 206).

OMIA - Online Mendelian Inheritance in Animals. 2014. Fac. Vet. Sci., Univ. Sydney.

Rothammer, S., A. Capitan, E. Mullaart, D. Seichter, I. Russ, and I. Medugorac. 2014. The 80-kb DNA duplication on BTA1 is the only remaining candidate mutation for the polled phenotype of Friesian origin. Genet. Sel. Evol. 46:44.

Schütz, E., C. Wehrhahn, M. Wanjek, R. Bortfeld, W.E. Wemheuer, J. Beck, and B. Brenig. 2016. The Holstein Friesian lethal haplotype 5 (HH5) results from a complete deletion of TFB1M and cholesterol deficiency (CDH) from an ERV-(LTR) insertion into the coding region of APOB. PLoS ONE 11:e0154602.

Schwarzenbacher, H., J. Burgstaller, F.R. Seefried, C. Wurmser, M. Hilbe, S. Jung., C. Fuerst, N. Dinhopl, H. Weissenböck, B. Fuerst-Waltl, M. Dolezal, R. Winkler, O. Grueter, U. Bleul, T. Wittek, R. Fries, and H. Pausch. 2016. A missense mutation in TUBD1 is associated with high juvenile mortality in Braunvieh and Fleckvieh cattle. BMC Genomics 17:400.

Shanks, R.D., D.B. Dombrowski, G.W. Harpestad, and J.L. Robinson. 1984. Inheritance of UMP synthase in dairy cattle. J. Hered. 75:337–340.

Shuster, D.E., M.E. Kehrli Jr., M.R. Ackermann, and R.O. Gilbert. 1992. Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cattle. Proc. Natl. Acad. Sci. USA 89:9225–9229.

Sonstegard, T.S., J.B. Cole, P.M. VanRaden, C.P. Van Tassell, D.J., Null, S.G. Schroeder, D. Bickhart, and M.C. McClure. 2013. Identification of a nonsense mutation in CWC15 associated with decreased reproductive efficiency in Jersey cattle. PLoS ONE 8:e54872.

Thomsen, B., P.H. Nissen, J.S. Agerholm, and C. Bendixen. 2010. Congenital bovine spinal dysmyelination is caused by a missense mutation in the SPAST gene. Neurogenetics 11:175–183.

VanRaden, P., D. Null, J. Hutchison, D. Bickhart, and S. Schroeder. 2014. Jersey haplotype 2 (JH2). Changes to evaluation system (August 2014). Council on Dairy Cattle Breeding.

VanRaden, P., D. Null, J. Hutchison, and T. Cooper. 2013. New fertility and stillbirth haplotypes and changes in haplotype status. Changes to evaluation system (August 2013). Council on Dairy Cattle Breeding.

VanRaden, P.M., D.J. Null, T.S. Sonstegard, H.A. Adams, C.P. Van Tassell, and K.M. Olson. 2012. Fine mapping and discovery of recessive mutations that cause abortions in dairy cattle. J. Dairy Sci. 95(Suppl. 2):ii–iii(abstr. LB6).

VanRaden, P.M., K.M. Olson, D.J. Null, and J.L. Hutchison. 2011. Harmful recessive effects on fertility detected by absence of homozygous haplotypes. J. Dairy Sci. 94:6153–6161.

Venhoranta, H., H. Pausch, K. Flisikowski, C. Wurmser, J. Taponen, H. Rautala, A. Kind, A. Schnieke, R. Fries, H. Lohi, and M. Andersson. 2014. In frame exon skipping in UBE3B is associated with developmental disorders and increased mortality in cattle. BMC Genomics 15:890.